The evolution of chromospheric activity in solar type stars

Diego Lorenzo-Oliveira (IAG/USP) Jorge Meléndez (IAG/USP) SAMPA group

Precision Spectroscopic 2017

Clues about AC evolution

In some recent work (Wilson 1962) it was noted, among other things, that H and K reversals are very much more nearly universal among main-sequence stars in the Hyades Cluster than among similar stars of the same spectral types in the local field.

Wilson, O. C (1963)

Age-Activity Relations

Stellar Ages: Age-Dating Methods

- <u>Seismology</u> (Chaplin & Miglio 2013)
- <u>Rotation</u> (Barnes 2007)
- <u>Isochrones</u> (Pont & Eyer 2004)
- <u>Magnetic</u> (Mamajek & Hillenbrand 2008)
- Kinematics (Rocha-Pinto et al. 2004)
- Chemical (Spina et al. 2016)
 And others...

Age-Mass(Color)-Activity Relations

Activity \rightarrow Rossby \rightarrow Prot

$$P(B - V, t) = f(B - V)g(t),$$

$$f(B - V) = a[(B - V)_0 - c]^b,$$

$$g(t) = t^n.$$

Age-Mass(Color)-Activity Relations

Age-Mass(Color)-Activity Relations

Chromospheric Indicators

Fluxes (erg/cm²/s)

Strong Spectral Lines (Ca II, Balmer lines, Na I, He I ...)

Chemical composition + Teff + $\log(g)$

"Metallicity Blind" Chromospheric Indices

Near-infrared <u>continuum</u> fluxes (around Ca II IRT lines)

The Age-Activity Relation (NIR)

Activity(NIR)-Evolutionary State

"Metallicity Blind" Chromospheric Indices

UV <u>continuum</u> fluxes (around Ca II H&K lines)

Lack of Evolution?

Age-mass-[Fe/H]-Activity Relation

Selection effects.

Age \rightarrow mass bias (younger stars are more massive) Higher [Fe/H] \rightarrow lower logR'HK \rightarrow older chrom. age Lower [Fe/H] \rightarrow higher logR'HK \rightarrow younger chrom. age

Asteroseismology & Open Clusters

25

20

~4 Gyr 👞 logR'HK ~ ~6 Gyr -4.83 +- 0.1 dex 15Z 10 Gemini-GMOS E (Low res) 5 100 150200 250300 HK_{index} (mÅ)

logR'HK ~

-5.03 +- 0.1 dex

M 67 : N = 59

NGC 188 ; N = 49

Lorenzo-Oliveira, Porto de Mello & Schiavon 2016

HIP79672: t = 4.2[-0.5,+0.3] timespan = 12.8 years

HIP10175: t = 3.1[-0.3,+0.4] timespan = 5.2 years

HIP54287: t = 6.5[-0.4,+0.3] timespan = 13.2 years

Activity Evolution of Solar Twins (Secular)

Activity Evolution of Solar Twins (Secular)

Chromospheric Activity: M Stars

- No chromospheric activity evolution picture.
- Lack of stars with known age.
- Lack of spectroscopic information & acurate distances

- Fainter and smaller than FGK stars.
- More complex rotational and magnetic evolution.

Activity Timescale

- Proxima b (4.8 Gyr) \rightarrow 10x FUV radiation & 250x X-rays than Earth (Ribas et al. 2016) - Kapteyn (11 Gyr) \rightarrow 1.7x Ly α & 20x X-rays than Earth (Guinan, Engle & Durbin 2016)

M Stars: H α AC Relation

M Stars: H α AC Relation

M Stars: Hα Ages

