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Radial	Velocity	Technique	



What	can	you	determine?	

A	small	planet	in	the	habitable	

zone	around	our	nearest	

neighbor,	Proxima	Centauri	



What	can	you	determine?	

A	small	planet	in	the	habitable	

zone	around	our	nearest	

neighbor,	Proxima	Centauri	



What	can	you	determine?	

A	small	planet	in	the	habitable	

zone	around	our	nearest	

neighbor,	Proxima	Centauri	



“Cross-Dispersed	Echelle”	
Spectrogrpah	



LimitaGons	to	instrument	stability	
	

•  Changes	in	the	spectrograph	response.	
(e.g.,	mechanical	moGon	of	the	spectrograph	or	detector,	changes	in	the	
refracGve	index	of	air	inside	the	spectrograph)	

	
•  Changes	in	the	light	injecGon.	



Strategies	for	instrument	stability	
	

•  Stabilize	the	instrument	with	extensive	engineering.	
	
•  Calibrate	for	(small	or	large)	changes.	
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vacuum	tank.	



Very	stabilized	instruments:	
HARPS	@	3.6m	at	ESO/Chile	

	
Spectrograph	on	a	rigid	

bench,	which	is	housed	in	a	

vacuum	tank.	

	

The	tank	itself	is	housed	in	

a	climate	controlled	room	

that	is	never	opened.	

•  Pressure	controlled	to	10-3	mbar	

•  Op?cal	bench	controlled	to	1	mK	



Very	stabilized	instruments:	
HARPS	@	3.6m	at	ESO/Chile	

	
Spectrograph	on	a	rigid	

bench,	which	is	housed	in	a	

vacuum	tank.	

	

The	tank	itself	is	housed	in	

a	climate	controlled	room	

that	is	never	opened.	

	

Light	is	coupled	from	the	

telescope	with	fiber	op?cs	

that	“scramble”	the	light.	



Very	stabilized	instruments:	
HARPS	@	3.6m	at	ESO/Chile	

	
Spectrograph	on	a	rigid	

bench,	which	is	housed	in	a	

vacuum	tank.	

	

The	tank	itself	is	housed	in	

a	climate	controlled	room	
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Light	is	coupled	from	the	

telescope	with	fiber	op?cs	

that	“scramble”	the	light.	

	

A	second	fiber	feed	a	

simultaneous	calibra?on	

source.	



Very	stabilized	instruments:	
HARPS	@	3.6m	at	ESO/Chile	

	
Cross-Correla?on	Technique	

observed	spectrum	

template	spectrum	

CCF	

radial	velocity	

Original	reference:	

Tonry	&	Davis	1979,	AJ,	84,	10	
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Radial	Velocity	Technique	
iodine	lines	



Gas	cell	technique:	
It	is	a	li\le	more	complicated	

	

instrumental	profile	

Butler	et	al.	1996,	PASP,	108,	500	



Calibrated	instruments:	
HIRES@	10m	Keck	telescope	in	Hawaii	

	

Spectrograph	not	

par?cularly	stabilized.	
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Stellar	Limita?ons	to	Measuring	RVs	(Jiber)	

Jiber	is	caused	by	non	

uniformity	of	the	stellar	

disk	as	a	func?on	of	?me.	

	

	

Examples:		

	

•  Acous?c	pressure	
modes	(P-modes)	

•  Granula?on	

•  Spots,	plage,	faculae	



RV	planets	as	a	funcGon	of	date	

alpha	Cen	Bb	

(not	real)	

51	Peg	b	

HD	114762b	

Proxima	Centauri	b	

(probably	real!)	



The	Alpha	and	Proxima	Centauri	System	

•  Alpha	and	Proxima	Centauri	system	is	a	triple	star	

system	with	two	Sun-like	stars	(A	and	B)	and	a	low-mass	

star	(Proxima,	M=0.1	Msun).		

•  A	and	B	orbit	each	other	in	80	years.	Periastron	distance	

is	11	AU.	

•  Proxima	is	much	further	away	and	has	a	very	long	period	

(P	>	100,000	years).	

	

•  This	is	the	closest	star	system	to	us	(d	=	4.4	ly).	



A	small	planet	around	alpha	Centauri	B	



A	small	planet	around	alpha	Centauri	B	

alpha	Centauri	doesn’t	even	have	planets.	WEAK!	Of	course	we	have	

the	best	planets	in	the	solar	system	–	THE	BEST!	



A	small	planet	around	alpha	Centauri	B	

Dumusque	et	al.	2012,	Nature,	491,	207	
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Dumusque	et	al.	2012,	Nature,	491,	207	



A	small	planet	around	alpha	Centauri	B	– Probably	not!	

Rajpaul+	(2016)	

Real	data	 Simulated	data	with	no	planet	



A	small	planet	around	Proxima	Centauri	



A	small	planet	around	Proxima	Centauri	

FINALLY	another	solar	system	delivers.	Just	like	Obamacare,	a	day	late	

and	a	dollar	short	though.	Best	taco	bowl	s?ll	at	Trump	Tower		



A	small	planet	around	Proxima	Centauri	



A	small	planet	around	Proxima	Centauri	



Seven	planets	around	a	single	star?	

Lovis	et	al.	2011,	A&A,	528,	112		

HD	10180	



Seven	planets	around	a	single	star?	

Lovis	et	al.	2011,	A&A,	528,	112		
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Lovis	et	al.	2011,	A&A,	528,	112		



New	radial	velocity	spectrographs	

See	reviews: 	Plavchan+	(2015,	arXiv:1503.01770)	

	 	 	Fischer+	(2016,	arXiv:1602.07939)	

	 	 	Wright	(2017,	arXiv:1707.07983)	
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Textbook	chapter:	Winn	(arXiv:1001:2010)	



The	things	that	you	can	directly	measure:	

•  Transit	dura?on	

•  Ingress/egress	?me	

•  Transit	depth	

•  Mid-transit	?me	

•  Time	between	successive	transits	

Things	that	you	can	derive	from	these	observables:	

•  Orbital	period	

•  Orbital	ephemerides	

•  Ra?o	of	the	size	of	the	planet	to	the	size	of	the	host	star	(Rp/Rs)	

•  Impact	parameter,	b	=	a	cos	i	/	Rs				for	e	=	0	

	

Things	that	you	can	use	these	values	to	determine	with	K	and	e	from	RV,	and	

es?mate	of	Ms:	

•  Ra?o	of	the	size	of	the	semi-major	axis	to	the	size	of	the	host	star	(a/Rs)	

•  Orbital	inclina?on	

•  Planet	mass	
•  a	for	the	orbit	using	Newton’s	version	of	Kepler’s	third	law	

•  Radius	of	the	star	

•  Radius	of	the	planet	
•  Density	of	the	star	

•  Surface	gravity	of	the	planet	



Two	ways:	

	

•  Look	for	the	transits	with	no	prior	
knowledge	

•  Look	for	transits	of	planets	found	with	
the	radial	velocity	method	

Finding	transiGng	planets	



Recall	the	transit	probability:		

For	a	Hot	Jupiter,	p	≈	10%	
	

But	these	planets	have	a	frequency,	η	≈	1%	

	

Therefore	on	order	of	a	thousand	stars	have	to	be	searched	for	

find	just	a	single	planet	this	way.	

	

Transit	Searches:	the	bad	news	



Recall	the	transit	dura?on:		

For	a	Hot	Jupiter	around	a	Sun-like	star,	Ttot	≈	3	hours	
	

Which	is	≈	5%	of	the	orbital	period	(e.g.,	3	days).	

	

So,	one	has	to	search	many	thousands	of	stars	con?nuously	for	

days	at	a	?me.	

Transit	Searches:	the	bad	news	



Recall	the	transit	depth:						δ	=	(Rp/Rs)
2						(neglec?ng	limb	darkening)	

For	a	Hot	Jupiter	around	a	Sun-like	star,	δ	≈	1%	

	

Say	you	want	to	detect	this	signal	at	10σ	confidence…	

	

S/N	=	sqrt(Nphotons)	

	

How	many	photons	do	you	need	to	collect	to	get	S/N	=	10?	

	

A	measly	1	x	106	photons!	

	

This	can	be	done	with	amateur	equipment!	

Transit	Searches:	some	good	news	



Remember	the	transit	depth:	(Rp/Rs)2		!!!	

Jupiter:	1.5%	transit	depth	

HD	209458b	–	from	the	ground	

Neptune:	0.5%	transit	depth	

GJ	436b	–	from	the	ground,	but	an	

M	dwarf	host	

Super-Earth:	0.05%	transit	depth	

	 	 	55	Cnc	e	–	from	space	



Transit	Searches:	Gmeline	

HD	209458b	



Transit	Searches:	why	the	drought?	

1.	More	noise	than	expected	from	the	Earth’s	atmosphere	
	

Scin?lla?on:		

The	varia?ons	in	intensity	component	of	

atmospheric	‘seeing’.	



Transit	Searches:	why	the	drought?	

2.	A	high	rate	of	astrophysics	false	posi?ves	
	



Transit	Searches:	why	the	drought?	

3.	Hot	Jupiters	are	not	very	common	
	

Frequency	is	a	lible	less	than	1%	



The	Kepler	Mission	
	

	

A	custom-built,	0.95m	diameter	space	

telescope	dedicated	to	finding	transi?ng	

planets	

	

Cost:	$600M	

	

Launched	in	2009	

	

Observing	strategy	is	to	stare	at	the	same	

field	for	3+	years	

	

1000s	of	transi?ng	planets	found	

	

Recently	passed	the	2000	paper	mark	

	

Spacecray	failure	in	May	2013	



Kepler-62:	a	five	planet	system	with	two	
super-Earths	in	the	habitable	zone	

Announced	April	19,	2013	



Kepler	à	K2	



Kepler	à	K2	



Seven	Earth-size	planets	around	

the	brown	dwarf	TRAPPIST-1	

Gillon+	2016,	2017	



TESS:	TransiGng	Exoplanet	Survey	Satellite	

A	new	space	telescope	to	

find	small	transi?ng	planets	

around	bright	stars	–	these	

are	the	planets	that	we	

could	study	in	more	detail.	

	

NASA	mission	

	

$200M	cost	

	

4	x	10cm	lenses	

	

Scheduled	for	launch	in	2018	

	

Mostly	planets	in	short-

period	orbits,	but	may	find	

habitable-zone	planets	

around	small	stars	



The	James	Webb	Space	Telescope	

The	JWST	is	the	intellectual	

successor	to	Hubble.	

	

It	will	have	a	6.5m	mirror	that	is	

op?mized	for	infrared	

observa?ons.	

	

It	is	scheduled	for	launch	in	

2018.	

	

The	es?mated	cost	of	the	

project	is	$8B.	
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Howard	2013,	Science,	340,	572	

Both	radial	veloci?es	

and	transits	depend	on	

stellar	characteriza?on	

to	derive	the	absolute	

planet	proper?es	



Fulton+	2017	

The	importance	of	precise	stellar	

characteriza?on	



Valen?	&	Fischer	2005	

Host	stars	are	a	fossil	record	of	planet	forma?on	

Melendez+	(2009)		



Bedell+	2017	

Interpret	TTV	masses	with	cau?on:	

Re-evalua?ng	the	Kepler-11	system	

High-precision	spectroscopy	(S/N	=	250)	

with	differen?al	equivalent	width	technique	

Low-precision	spectroscopy	(S/N=	30)	with	

spectral	fi|ng	

[M/H]	=	+0.06	isochrones	

Sun	



Interpret	TTV	masses	with	cau?on:	

Re-evalua?ng	the	Kepler-11	system	

Bedell+	2017	Planet	densi?es	change	by	20	–	95%!	



Interpret	TTV	masses	with	cau?on:	

Can	we	trust	the	TRAPPIST-1	masses?	

Wang+	2016	



Challenges	looking	forward	
•  Radial	velocity	planet	detecGon:	

•  How	do	we	disentangle	stellar	jiber	and	instrumental	noise	from	the	

signals	of	Earth	twins?	

•  How	do	we	best	use	the	next	genera?on	of	large	telescopes?	
•  How	do	we	measure	the	masses	of	a	large	sample	of	TESS	planets?	

•  Host	star	characterizaGon:	
•  Can	we	connect	stellar	abundances	to	planet	forma?on	beyond	the	

giant	planet	–	metallicity	correla?on?	

•  How	do	we	accurately	characterize	large	numbers	of	exoplanet	host	

stars	in	the	TESS	era?	

•  Transit	spectroscopy:	
•  How	much	of	JWST’s	poten?al	power	will	we	be	able	to	use	for	transit	

spectroscopy?	

•  How	do	we	move	beyond	one-off	studies	to	the	sta?s?cal	

inves?ga?on	of	exoplanet	atmospheres?	


