

# The Role of Precision Spectroscopy in the Search for Earth 2.0

Jacob Bean University of Chicago

#### Known exoplanets



# Radial velocity planet detection

Radial velocity planet detection

Exoplanet atmospheric characterization

Wavelength

Rayleigh

Host star characterization

Radial velocity planet detection

Exoplanet atmosphere studies

Wavelength

Rayleigh

# Radial velocity planet detection

# Radial Velocity Technique The star's chemical fingerprints 1. Receding star 2. Approaching star spectrograph camera

#### What can you determine?

#### Table 1 | Stellar properties, Keplerian parameters, and derived quantities

| Stellar properties                           | Value                     | Reference |  |
|----------------------------------------------|---------------------------|-----------|--|
| Spectral type                                | M5.5V                     | 2         |  |
| M*/Mo                                        | 0.120 (0.105-0.135)       | 30        |  |
| R*/R <sub>o</sub>                            | 0.141 (0.120-0.162)       | 2         |  |
| L./Lo                                        | 0.00155 (0.00149-0.00161) | 2         |  |
| Effective temperature (K)                    | 3,050 (2,950-3,150)       | 2         |  |
| Rotation period (d)                          | about 83                  | 3         |  |
| Habitable zone range (AU)                    | about 0.0423-0.0816       | 30        |  |
| Habitable zone periods (d)                   | about 9.1-24.5            | 30        |  |
| Keplerian fit                                | Proxima b                 |           |  |
| Period (d)                                   | 11.186 (11.184–11.187)    |           |  |
| Doppler amplitude (m s <sup>-1</sup> )       | 1.38(1.17-1.59)           |           |  |
| Eccentricity, e                              | <0.35                     |           |  |
| Mean longitude, $\lambda = \omega + M_0$ (°) | 110 (102-118)             |           |  |
| Argument of periastron, $\omega_0$ (°)       | 310 (0-360)               |           |  |
|                                              | 1.1.1.12.10.123           |           |  |
| Statistics summary                           |                           |           |  |
| Frequentist FAP                              | $7 \times 10^{-8}$        |           |  |
| Bayesian odds in favour, $B_1/B_0$           | $2.1 \times 10^{7}$       |           |  |
| UVES jitter (m s <sup>-1</sup> )             | 1.69 (1.22–2.33)          |           |  |
| HARPS pre-2016 jitter (m s <sup>-1</sup> )   | 1.76 (1.22–2.36)          |           |  |
| HARPS PRD jitter (m s $^{-1}$ )              | 1.14 (0.57–1.84)          |           |  |
| Derived quantities                           |                           |           |  |
| Orbital semi-major axis, a (AU)              | 0.0485 (0.0434-0.0526)    |           |  |
| Minimum mass, mpsini (Mo)                    | 1.27 (1.10-1.46)          |           |  |
| Equilibrium black body temperature (K)       | 234 (220–240)             |           |  |
| Irradiance compared with Earth               | 65%                       |           |  |
| Geometric probability of transit             | about 1.5%                |           |  |
| Transit depth (Earth-like density)           | about 0.5%                |           |  |

The estimates are the maximum *a posteriori* values and the uncertainties of the parameters are expressed as 68% credibility intervals. We provide only an upper limit for the eccentricity (95% confidence level). Extended Data Table 1 contains the list of all of the model parameters.

A small planet in the habitable zone around our nearest neighbor, Proxima Centauri



#### What can you determine?

#### Table 1 | Stellar properties, Keplerian parameters, and derived quantities

| Stellar properties                           | Value                     | Reference |
|----------------------------------------------|---------------------------|-----------|
| Spectral type                                | M5.5V                     | 2         |
| M∗/M₀                                        | 0.120 (0.105-0.135)       | 30        |
| R*/R <sub>o</sub>                            | 0.141 (0.120-0.162)       | 2         |
| L*/Lo                                        | 0.00155 (0.00149-0.00161) | 2         |
| Effective temperature (K)                    | 3,050 (2,950-3,150)       | 2         |
| Rotation period (d)                          | about 83                  | 3         |
| Habitable zone range (AU)                    | about 0.0423-0.0816       | 30        |
| Habitable zone periods (d)                   | about 9.1-24.5            | 30        |
| Keplerian fit                                | Proxima b                 |           |
| Period (d)                                   | 11.186 (11.184–11.187)    |           |
| Doppler amplitude (m s <sup>-1</sup> )       | 1.38 (1.17-1.59)          |           |
| Eccentricity, e                              | < 0.35                    |           |
| Mean longitude, $\lambda = \omega + M_0$ (°) | 110 (102-118)             |           |
| Argument of periastron, $\omega_0$ (°)       | 310 (0-360)               |           |
| Statistics summary                           |                           |           |
| Frequentist FAP                              | $7 \times 10^{-8}$        |           |
| Bayesian odds in favour, B1/B0               | $2.1 \times 10^{7}$       |           |
| UVES jitter (m s <sup>-1</sup> )             | 1.69 (1.22-2.33)          |           |
| HARPS pre-2016 jitter (m s <sup>-1</sup> )   | 1.76 (1.22-2.36)          |           |
| HARPS PRD jitter (m s <sup>-1</sup> )        | 1.14 (0.57–1.84)          |           |
| Derived quantities                           |                           |           |
| Orbital semi-major axis, a (AU)              | 0.0485 (0.0434-0.0526)    |           |
| Minimum mass, mpsini (M))                    | 1.27 (1.10-1.46)          |           |
| Equilibrium black body<br>temperature (K)    | 234 (220–240)             |           |
| Irradiance compared with Earth               | 65%                       |           |
| Geometric probability of transit             | about 1.5%                |           |
| Transit depth (Earth-like density)           | about 0.5%                |           |

The estimates are the maximum *a posteriori* values and the uncertainties of the parameters are expressed as 68% credibility intervals. We provide only an upper limit for the eccentricity (95% confidence level). Extended Data Table 1 contains the list of all of the model parameters.

A small planet in the habitable zone around our nearest neighbor, Proxima Centauri



#### What can you determine?

#### Table 1 | Stellar properties, Keplerian parameters, and derived quantities

| Stellar properties                                  | Value                     | Reference |
|-----------------------------------------------------|---------------------------|-----------|
| Spectral type                                       | M5.5V                     | 2         |
| M*/Mo                                               | 0.120 (0.105-0.135)       | 30        |
| R•/R <sub>o</sub>                                   | 0.141 (0.120-0.162)       | 2         |
| L./Lo                                               | 0.00155 (0.00149-0.00161) | 2         |
| Effective temperature (K)                           | 3,050 (2,950-3,150)       | 2         |
| Rotation period (d)                                 | about 83                  | 3         |
| Habitable zone range (AU)                           | about 0.0423-0.0816       | 30        |
| Habitable zone periods (d)                          | about 9.1-24.5            | 30        |
| Keplerian fit                                       | Proxima b                 |           |
| Period (d)                                          | 11.186 (11.184-11.187)    |           |
| Doppler amplitude (m s <sup>-1</sup> )              | 1.38 (1.17-1.59)          |           |
| Eccentricity, e                                     | <0.35                     |           |
| Mean longitude, $\lambda = \omega + M_0$ (°)        | 110 (102-118)             |           |
| Argument of periastron, $\omega_0$ (°)              | 310 (0-360)               |           |
| Statistics summary                                  |                           |           |
| Frequentist FAP                                     | $7 \times 10^{-8}$        |           |
| Bayesian odds in favour, $B_1/B_0$                  | $2.1 \times 10^{7}$       |           |
| UVES jitter (m s <sup>-1</sup> )                    | 1.69 (1.22-2.33)          |           |
| HARPS pre-2016 jitter (m s <sup>-1</sup> )          | 1.76 (1.22-2.36)          |           |
| HARPS PRD jitter (m s <sup>-1</sup> )               | 1.14 (0.57–1.84)          |           |
| Derived quantities                                  |                           |           |
| Orbital semi-major axis, a (AU)                     | 0.0485 (0.0434-0.0526)    |           |
| Minimum mass, m <sub>p</sub> sini (M <sub>@</sub> ) | 1.27 (1.10-1.46)          |           |
| Equilibrium black body<br>temperature (K)           | 234 (220–240)             |           |
| Irradiance compared with Earth                      | 65%                       |           |
| Geometric probability of transit                    | about 1.5%                |           |
| Transit depth (Earth-like density)                  | about 0.5%                |           |

The estimates are the maximum *a posteriori* values and the uncertainties of the parameters are expressed as 68% credibility intervals. We provide only an upper limit for the eccentricity (95% confidence level). Extended Data Table 1 contains the list of all of the model parameters.

A small planet in the habitable zone around our nearest neighbor, Proxima Centauri



# "Cross-Dispersed Echelle" Spectrogrpah



## Limitations to instrument stability

• Changes in the spectrograph response.

(e.g., mechanical motion of the spectrograph or detector, changes in the refractive index of air inside the spectrograph)

• Changes in the light injection.

### **Strategies for instrument stability**

- Stabilize the instrument with extensive engineering.
- Calibrate for (small or large) changes.



Spectrograph on a rigid bench, which is housed in a vacuum tank.



Spectrograph on a rigid bench, which is housed in a vacuum tank.

The tank itself is housed in a climate controlled room that is never opened.

- Pressure controlled to 10<sup>-3</sup> mbar
- Optical bench controlled to 1 mK



Spectrograph on a rigid bench, which is housed in a vacuum tank.

The tank itself is housed in a climate controlled room that is never opened.

Light is coupled from the telescope with fiber optics that "scramble" the light.



Spectrograph on a rigid bench, which is housed in a vacuum tank.

The tank itself is housed in a climate controlled room that is never opened.

Light is coupled from the telescope with fiber optics that "scramble" the light.

A second fiber feed a simultaneous calibration source.



### **Strategies for instrument stability**

- Stabilize the instrument with extensive engineering.
- Calibrate for (small or large) changes.

### Gas cell technique





# Radial Velocity Technique The star's chemical fingerprints 1. Receding star 2. Approaching star spectrograph camera

# Radial Velocity Technique The star's chemical fingerprints 1. Receding star 2. Approaching star spectrograph camera

# **Radial Velocity Technique** iodine lines The star's chemical fingerprints 1. Receding star 2. Approaching star spectrograph camera

# Gas cell technique: It is a little more complicated



Butler et al. 1996, PASP, 108, 500

## Calibrated instruments: HIRES@ 10m Keck telescope in Hawaii



Spectrograph not particularly stabilized.

#### Known planets from RV



#### Known planets from RV



### Stellar Limitations to Measuring RVs (Jitter)





Jitter is caused by non uniformity of the stellar disk as a function of time.

Examples:

- Acoustic pressure modes (P-modes)
- Granulation
- Spots, plage, faculae



HD 114762b

#### **RV** planets as a function of date



#### The Alpha and Proxima Centauri System

- Alpha and Proxima Centauri system is a triple star system with two Sun-like stars (A and B) and a low-mass star (Proxima, M=0.1 M<sub>sun</sub>).
- A and B orbit each other in 80 years. Periastron distance is 11 AU.
- Proxima is much further away and has a very long period (P > 100,000 years).
- This is the closest star system to us (d = 4.4 ly).



#### The New York Times

New Planet in Neighborhood, Astronomically Speaking



L. Calcada/European Southern Observatory, via Associated Press

An artist's rendering of a planet astronomers have found in Alpha Centauri, a star system that is the Sun's closest neighbor.

By DENNIS OVERBYE Published: October 16, 2012

#### **The New York Times**

New Planet in Neighborhood, Astronomically Speaking



An artist's rendering of a planet astronomers have found in Alpha Centauri, a star system that is the Sun's closest region

By DENNIS OVERBYE Published: October 16, 2012



Donald J. Trump 😔 @realDonaldTrump · 18h

alpha Centauri doesn't even have planets. WEAK! Of course we have the best planets in the solar system - THE BEST!

#### Table 1 | Orbital parameters of the planet orbiting a Centauri B

| Parameter                              | Value                 |
|----------------------------------------|-----------------------|
| Orbital period (d)                     | 3.2357 ± 0.0008       |
| Time of maximum velocity (BJD)         | $2455280.17 \pm 0.17$ |
| Eccentricity                           | 0.0 (fixed)           |
| Velocity semi-amplitude ( $m s^{-1}$ ) | $0.51 \pm 0.04$       |
| Minimum mass (Earth masses)            | $1.13 \pm 0.09$       |
| Number of data points                  | 459                   |
| O - C residuals (m s <sup>-1</sup> )   | 1.20                  |
| Reduced $\chi^2$ value                 | 1.51                  |

BJD, barycentric Julian date; O - C, observed minus calculated.



Dumusque et al. 2012, Nature, 491, 207





Dumusque et al. 2012, Nature, 491, 207

#### A small planet around alpha Centauri B – Probably not!


### The New York Times

#### One Star Over, a Planet That Might Be Another Earth

By KENNETH CHANG AUG. 24, 2016



An artist's impression of the planet Proxima b orbiting Proxima Centauri, the closest star to Earth's sun. M. Kommesser/European Southern Observatory

### The New York Times

#### One Star Over, a Planet That Might Be Another Earth

By KENNETH CHANG AUG. 24, 2016



An artist's impression of the planet Proxima b orbiting Proxima Centa M. Kommesser/European Southern Observatory



Donald J. Trump 🤣 @realDonaldTrump · 18h

FINALLY another solar system delivers. Just like Obamacare, a day late and a dollar short though. Best taco bowl still at Trump Tower

#### Table 1 | Stellar properties, Keplerian parameters, and derived quantities

| Stellar properties                                  | Value                     | Reference |
|-----------------------------------------------------|---------------------------|-----------|
| Spectral type                                       | M5.5V                     | 2         |
| M*/Mo                                               | 0.120 (0.105-0.135)       | 30        |
| R*/R <sub>o</sub>                                   | 0.141 (0.120-0.162)       | 2         |
| L./Lo                                               | 0.00155 (0.00149-0.00161) | 2         |
| Effective temperature (K)                           | 3,050 (2,950-3,150)       | 2         |
| Rotation period (d)                                 | about 83                  | 3         |
| Habitable zone range (AU)                           | about 0.0423-0.0816       | 30        |
| Habitable zone periods (d)                          | about 9.1-24.5            | 30        |
| Keplerian fit                                       | Proxima b                 |           |
| Period (d)                                          | 11.186 (11.184–11.187)    |           |
| Doppler amplitude (m s <sup>-1</sup> )              | 1.38 (1.17-1.59)          |           |
| Eccentricity, e                                     | <0.35                     |           |
| Mean longitude, $\lambda = \omega + M_0$ (°)        | 110 (102–118)             |           |
| Argument of periastron, $\omega_0$ (°)              | 310 (0-360)               |           |
| Statistics summary                                  |                           |           |
| Frequentist FAP                                     | $7 \times 10^{-8}$        |           |
| Bayesian odds in favour, B1/B0                      | $2.1 \times 10^{7}$       |           |
| UVES jitter (m s <sup>-1</sup> )                    | 1.69 (1.22-2.33)          |           |
| HARPS pre-2016 jitter (m s <sup>-1</sup> )          | 1.76 (1.22-2.36)          |           |
| HARPS PRD jitter (m $s^{-1}$ )                      | 1.14 (0.57–1.84)          |           |
| Derived quantities                                  |                           |           |
| Orbital semi-major axis, a (AU)                     | 0.0485 (0.0434-0.0526)    |           |
| Minimum mass, m <sub>p</sub> sini (M <sub>☉</sub> ) | 1.27 (1.10-1.46)          |           |
| Equilibrium black body<br>temperature (K)           | 234 (220–240)             |           |
| Irradiance compared with Earth                      | 65%                       |           |
| Geometric probability of transit                    | about 1.5%                |           |
| Transit depth (Earth-like density)                  | about 0.5%                |           |

The estimates are the maximum *a posteriori* values and the uncertainties of the parameters are expressed as 68% credibility intervals. We provide only an upper limit for the eccentricity (95% confidence level). Extended Data Table 1 contains the list of all of the model parameters.







#### Seven planets around a single star?

#### Seven planets around a single star?





Lovis et al. 2011, A&A, 528, 112



Lovis et al. 2011, A&A, 528, 112

### New radial velocity spectrographs

| Instrument       | Telescope                  | Measurement<br>precision, Spectral<br>Grasp, Resolution      | PI; (relevant publications) /<br>First Light                                          |
|------------------|----------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------|
| APF              | Lick 2.4 m                 | 1 m/s, 374-970 nm,<br>R=120k / 490-600<br>with iodine cell   | Vogt; (Vogt et al. 2014,<br>Radovan et al. 2010) / 2013                               |
| CHIRON           | Chile                      | 0.5 m/s over 10 days,<br>2 m/s over 2 years,<br>R-90k,130k   | Debra Fischer;<br>Commissioned 2012;<br>Tokovinin et al (2013)                        |
| CODEX            | E-ELT                      | 2 cm/s, 370-710 nm,<br>R=120k                                | Pasquini; (Delabre &<br>Manescau 2010; Pasquini et<br>al. 2010a,b, 2008) / ~2025      |
| Coralie          | Euler Swiss<br>Telescope   | 2 m/s, 391-681 nm,<br>R=50k                                  | (Queloz et al. 1999) / 1998                                                           |
| ESPRESSO         | VLT                        | 10 cm/s (5 cm/s), 380-<br>686 nm, R=120k<br>(220k)           | Pepe; (Spanò et al. 2012,<br>2008; Pepe et al. 2010) /<br>2016                        |
| EXPRES           | DCT                        | 10 cm/s, 380-700 nm,<br>R~200k                               | Fischer; 2016-2017                                                                    |
| G-CLEF           | GMT                        | 20 cm/s, 350-950 nm,<br>R=120k / also MOS<br>mode            | Szentgyorgyi; (Szentgyorgyi<br>et al. 2012) / 2021                                    |
| Hamilton Echelle | Lick: Shane 3m<br>CAT 0.6m | 3 m/s, 340-900 nm,<br>R=60-100k, 490-600<br>with iodine cell | Vogt; (Vogt 1987) / 1986                                                              |
| HARPS-N          | TNG 3.6 m                  | 1 m/s, 380-680 nm,<br>R=110,000k                             | Pepe; (Cosentino et al., 2012,<br>2014; Langellier et al. 2014) /<br>2012             |
| HARPS            | ESO 3.6 m                  | 1 m/s , 380-680 nm,<br>R=110,000k                            | Pepe; (Pepe et al. 2000,<br>2003; Rupprecht et al. 2004,<br>Lovis et al. 2006) / 2002 |

| HIRES        | Keck 10 m                               | 2 m/s, 360-1000 nm,<br>R=85k / 490-600 with<br>iodine cell | Vogt; (Vogt et al. 1994) / 1996                                                            |
|--------------|-----------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| HRS          | HET                                     | 2.5 m/s, 390-1100<br>nm, R=120k                            | MacQueen; (Tull et al. 1998) /<br>2001                                                     |
| LCOGT NRES   | Global network<br>of 6<br>spectrometers | ~1-3 m/s, 390-860<br>nm; R~53k                             | (Eastman et al. 2014) / 2015-<br>2016                                                      |
| MINERVA      | Mt Hopkins<br>4x0.7 m                   | ~1 m/s, 500-650 nm,<br>R~50k                               | John Johnson (Swift et al.<br>2015) / 2015                                                 |
| SHREK        | Keck 10 m                               | 1 m/s, 440-590 nm,<br>R=85k / red channel<br>later         | Howard & Marcy;<br>(http://nexsci.caltech.edu/kec<br>k_strategic_planning_Sep201<br>4.pdf) |
| Sophie       | 1.93 m Haute-<br>Provence               | 3 m/s, 387-694 nm,<br>R=75k                                | (Perruchot et al. 2008) / 2006                                                             |
| TRES         | Whipple Obs<br>1.5 m                    | 15 m/s, 380-900 nm,<br>R=44k                               | Szentgyorgyi; (Szentgyorgyi<br>& Furesz 2007) / 2007                                       |
| Tull Echelle | 2.7 m Harlan J.<br>Smith                | 340-1090 nm, R=60k,<br>240k                                | Phillip MacQueen;                                                                          |

| Instrument  | Telescope                              | Measurement<br>precision, Spectral<br>Grasp, Resolution | PI or relevant publication,<br>First Light                  |
|-------------|----------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|
| APOGEE      | 2.5-m Sloan<br>Foundation<br>Telescope | ~10 m/s, MOS, 1.51-<br>1.70 microns, R=22.5k            | Deshpande et al. (2013)                                     |
| CARMENES    | Calar Alto                             | ~3 m/s; 0.5-1.8,<br>microns, R~80k                      | Quirrenbach et al. (2012), 2016                             |
| CRIRES      | VLT                                    | 5 m/s, K-band,<br>R~100k                                | Bean et al. (2010)                                          |
| CSHELL      | IRTF                                   | 5 m/s short term, 35<br>m/s long term, K-band<br>R=46k  | Anglada-Escude et al. (2012b),<br>Plavchan et al. (2013a,b) |
| ESPaDOnS    | CFHT                                   | 0.3-1 microns,<br>R~70k                                 | Jean-Francois Donati                                        |
| HPF         | HET                                    | ~3 m/s, YJ bands<br>R~50k                               | Mahadevan et al. (2012)                                     |
| ISHELL      | IRTF                                   | ~2-3 m/s, HK bands<br>R~75k                             | Rayner et al. (2012), 2016                                  |
| IGRINS      | Harlan Smith @<br>McDonald             | HK bands, R~40k                                         | Dan Jaffe, (Yuk et al. 2010)                                |
| iLocater    | LBT                                    | 20 cm/s, 0.95-1.10<br>microns, R=150k                   | Justin R. Crepp, in design study phase                      |
| MINERVA-RED | Mt Hopkins<br>2x0.7 m                  | < 1 m/s, 0.8-1.0<br>microns                             | Cullen Blake, spectrometer in<br>lab testing phase          |
| NIRSPEC2    | Keck                                   | J,H,K,L or M band,<br>R~50k                             | lan McLean, in design study phase                           |
| SPIRou      | CFHT                                   | 0.98-2.35 microns,<br>R~70k                             | Thibault et al. (2012), 2017                                |

See reviews: Plavchan+ (2015, arXiv:1503.01770) Fischer+ (2016, arXiv:1602.07939) Wright (2017, arXiv:1707.07983)

# The role of precision spectroscopy...

# Radial velocity planet detection

# The role of precision spectroscopy...

# Exoplanet atmospheric characterization

Wavelength

Rayleigh



Textbook chapter: Winn (arXiv:1001:2010)

The things that you can directly measure:

- Transit duration
- Ingress/egress time
- Transit depth
- Mid-transit time
- Time between successive transits

Things that you can derive from these observables:

- Orbital period
- Orbital ephemerides
- Ratio of the size of the planet to the size of the host star  $(R_p/R_s)$
- Impact parameter,  $b = a \cos i / R_s$  for e = 0

Things that you can use these values to determine with K and e from RV, and estimate of  $M_s$ :

- Ratio of the size of the semi-major axis to the size of the host star  $(a/R_s)$
- Orbital inclination
- Planet mass
- a for the orbit using Newton's version of Kepler's third law
- Radius of the star
- Radius of the planet
- Density of the star
- Surface gravity of the planet

# **Finding transiting planets**

Two ways:

- Look for the transits with no prior knowledge
- Look for transits of planets found with the radial velocity method

### **Transit Searches: the bad news**

Recall the transit probability:

$$p_{\rm tra} = p_{\rm occ} = \frac{R_{\star}}{a} \approx 0.005 \left(\frac{R_{\star}}{R_{\odot}}\right) \left(\frac{a}{1 \,{\rm AU}}\right)^{-1}$$

For a Hot Jupiter,  $p \approx 10\%$ 

But these planets have a frequency,  $\eta \approx 1\%$ 

Therefore on order of a thousand stars have to be searched for find just a single planet this way.

### **Transit Searches: the bad news**

Recall the transit duration:

$$T_{\rm tot} \equiv t_{\rm IV} - t_{\rm I} = \frac{P}{\pi} \sin^{-1} \left[ \frac{R_{\star}}{a} \frac{\sqrt{(1+k)^2 - b^2}}{\sin i} \right]$$

For a Hot Jupiter around a Sun-like star,  $T_{tot} \approx 3$  hours

Which is  $\approx$  5% of the orbital period (e.g., 3 days).

So, one has to search many thousands of stars continuously for days at a time.

## **Transit Searches: some good news**

Recall the transit depth:  $\delta = (R_p/R_s)^2$  (neglecting limb darkening)

For a Hot Jupiter around a Sun-like star,  $\delta \approx 1\%$ 

Say you want to detect this signal at 10o confidence...

 $S/N = sqrt(N_{photons})$ 

How many photons do you need to collect to get S/N = 10?

A measly  $1 \times 10^6$  photons!

This can be done with amateur equipment!

## Remember the transit depth: $(R_p/R_s)^2$ !!!



## **Transit Searches: timeline**



### **Transit Searches: why the drought?**

#### 1. More noise than expected from the Earth's atmosphere

Scintillation: 
$$\sigma_{\rm scin} = \sigma_0 \frac{({\rm Airmass})^{7/4}}{D^{2/3} (\Delta t)^{1/2}} \exp\left(-\frac{h}{8000 \ {\rm m}}\right)$$

The variations in intensity component of atmospheric 'seeing'.





**Figure 2.** Light curves with white noise only (top panel), red noise only (middle panel) and white and red noise (bottom panel). Typical light curves from a high-precision rapid time-series photometry for bright targets in transit surveys resemble portions of the bottom-panel curve.

## **Transit Searches: why the drought?**

2. A high rate of astrophysics false positives



## **Transit Searches: why the drought?**

3. Hot Jupiters are not very common

#### Frequency is a little less than 1%

## **The Kepler Mission**



A custom-built, 0.95m diameter space telescope dedicated to finding transiting planets

Cost: \$600M

Launched in 2009

Observing strategy is to stare at the same field for 3+ years

1000s of transiting planets found

Recently passed the 2000 paper mark

Spacecraft failure in May 2013

# Kepler-62: a five planet system with two super-Earths in the habitable zone

# The New York Times

Two Promising Places to Live, 1,200 Light-Years From Earth



Announced April 19, 2013

# Kepler $\rightarrow$ K2



## Kepler $\rightarrow$ K2



# Seven Earth-size planets around the brown dwarf TRAPPIST-1





Gillon+ 2016, 2017

## **TESS: Transiting Exoplanet Survey Satellite**



A new space telescope to find small transiting planets around bright stars – these are the planets that we could study in more detail.

NASA mission

\$200M cost

4 x 10cm lenses

Scheduled for launch in 2018

Mostly planets in shortperiod orbits, but may find habitable-zone planets around small stars

#### **The James Webb Space Telescope**



The JWST is the intellectual successor to Hubble.

It will have a 6.5m mirror that is optimized for infrared observations.

It is scheduled for launch in 2018.

The estimated cost of the project is \$8B.



# The role of precision spectroscopy...

Radial velocity planet detection

Exoplanet atmosphere studies

Wavelength

Rayleigh

# The role of precision spectroscopy...

Host star characterization Both radial velocities and transits depend on stellar characterization to derive the absolute planet properties



Howard 2013, Science, 340, 572

# The importance of precise stellar characterization



Fulton+ 2017

#### Host stars are a fossil record of planet formation



Melendez+ (2009)

# Interpret TTV masses with caution: Re-evaluating the Kepler-11 system



High-precision spectroscopy (S/N = 250) with differential equivalent width technique Low-precision spectroscopy (S/N= 30) with spectral fitting



Bedell+ 2017

# Interpret TTV masses with caution: Re-evaluating the Kepler-11 system



Planet densities change by 20 – 95%!

Bedell+ 2017
## Interpret TTV masses with caution: Can we trust the TRAPPIST-1 masses?



Wang+ 2016

# **Challenges looking forward**

### Radial velocity planet detection:

- How do we disentangle stellar jitter and instrumental noise from the signals of Earth twins?
- How do we best use the next generation of large telescopes?
- How do we measure the masses of a large sample of TESS planets?

#### • Host star characterization:

- Can we connect stellar abundances to planet formation beyond the giant planet – metallicity correlation?
- How do we accurately characterize large numbers of exoplanet host stars in the TESS era?

### • Transit spectroscopy:

- How much of JWST's potential power will we be able to use for transit spectroscopy?
- How do we move beyond one-off studies to the statistical investigation of exoplanet atmospheres?