Carbon and nitrogen in a sample of solar analogues using molecular lines: thin disc stars with/without giant planets

Rafael Botelho, **André Milone** (INPE, Brazil) & Ronaldo da Silva (SSDC/ASI, Italy)

andre.milone@inpe.br

Precision Spectroscopy 2017 – IAG/USP 1-4 August

Topics

- Sample & high resolution spectra
- Selection of lines of CH, C₂, CN (and NH)
- Spectral synthesis
- Abundance results and their errors
- Conclusions & perspectives

Our results at beginning!!!

Takeda et al. (2005): [Fe/H]

Sample & Spectra

- № 28 out of 89 solar analogues from Takeda's sample of 160 nearby mid-F to early-K dwarfs and subgiants (Takeda+ 2005)
 - * blue spectra & thin disc (our kinematics classification)
 - * 15 are planet hosts (exoplanet.org on 20 Jul 2017)
- $5277 \le T_{eff} \le 6277 \text{ K}$; $3.84 \le \log g \le 5.04$; $-0.33 \le [Fe/H] \le +0.33$ (500 K, 0.60 dex & 0.33 dex around solar value)
 - $e(T_{eff}) > 15 \text{ K}; < e(\log g) > 0.04 \text{ dex}; < e([Fe/H]) > 0.016 \text{ dex}$

Spectra

- ♦ Okayama Observ. 1.88m+HIgh-Dispersion Echelle Spectrograph
- \otimes R = 70,000
- *** blue**: 3900-5100 Å <S/N> = 320
- **green-yellow**: 5000-6200 Å < S/N > = 207 (R=90,000 for 13 stars only, narrower slit)

Sample

age of sample stars: from 2 up to 9 Gyr

Sample

Selection of molecular lines

- * Visual inspection on a solar atlas to look for candidates of "isolated"/sensitive spectral features
- Spectral synthesis diagnostic
- Calibration to the solar spectrum

Spectral synthesis

- **MOOG 2014 + VALD atomic & Kurucz molecular lines**
 - \oplus D₀ (CH)=3.464 eV, D₀(C₂)=6.156 eV, D₀(CN)=7.65 eV
- * Castelli & Kurucz (2004) model atmospheres
- **Solar chemical pattern by Asplund+2009 & Grevesse+2010**
 - * $\log \varepsilon$ (C)=8.43, $\log \varepsilon$ (N)=7.83, $\log \varepsilon$ (O)=8.69 & $\log \varepsilon$ (Fe)=7.50
- Python script to derive [X/H] from the spectral synthesis (rms based)

CH A-X: 8 lines

CH A-X lines: example of calibration to Sun

CH A-X: 8 lines (electronic system of G band)

Line	Vibrational band	Spectral range	Blue	Red
(Å)	(v',v")	(Å)	Continuum point (Å)	Continuum point (Å)
4192.58	(0,0)	4180-4210	4185.91	4197.50
4212.65	(0,0)	4200-4230	4205.70	4221.85
4213.87	(1,1)	4200-4230	4205.70	4221.85
4217.24	(0,0)	4200-4230	4205.70	4221.85
4218.74	(1,1)	4200-4230	4205.70	4221.85
4263.61	(2,2)	4256-4286	4257.85	4283.28
4263.97	(2,2)	4256-4286	4257.85	4283.28
4292.80	(0,0)	4276-4307	4287.25	4295.52

2 lines of C_2 D-A (Swan System): example for $(0,0) \lambda 5165 \text{Å}$

[C/H]

- **⊗** variance-weighted of [C/H]_{CH} and [C/H]_{C2}
- \otimes errors in $[C/H]_{CH_i}$ and $[C/H]_{C2_i}$ of individual lines
 - * due to spectral synthesis and parameters errors
 - ♦ HD016141 as "average" star
 - \otimes typical lines: CH B-X λ 4217Å & C₂ D-A λ 5165Å

$$error[C/H] = sqrt(e[C/H]_{Teff}^2 + e[C/H]_{logg}^2 + e[C/H]_{[Fe/H]}^2 + e[C/H]_{synthesis}^2)$$

 $error[C/H]_{CHj} = sqrt(0.007^2 + 0.005^2 + 0.000^2 + 0.01^2) = 0.013 dex$

 $\overline{\text{error}[C/H]_{C2j} = \text{sqrt}(0.008^2 + 0.002^2 + 0.009^2 + 0.01^2) = 0.016 \, \text{dex}}$

$$[C/H]_{CH} \text{ and } [C/H]_{C2} \Rightarrow \overline{[X/H]} = \frac{\sum_{i}([X/H]/e^{2})}{\sum_{i}(1/e^{2})}$$
mean errors
$$\pm 0.005 \quad \& \quad \pm 0.014 \text{ dex}$$

mean error ±0.004 dex

→ [C/H]

[C/H]_{C2} vs. [C/H]_{CH}

v_{macro} & v.sin(i)

 $m v_{macro} = v_{macro,\odot} - 0.0070 \, T_{eff} + 9.2422 x 10^{-7} \, T_{eff}^2 - 1.81 (log \, g - 4.44) + 9.95$

Santos et al. (2016)

CN B-X lines (CN Violet System)

Line	Vibrational band	Spectral range	Blue	Red
(Å)	(v',v")	(Å)	Continuum point (Å)	Continuum point (Å)
3841.72	(5,5)	3839-3869	<u> </u>	3866.63
3851.26	(2,2)	3839-3869		3866.64
3880.35	(0,0)	3874-3904	()	3883.92
3880.70	(0,0)	3874-3904		3883.92
3881.01	(0,0)	3874-3904	N	3883.92
3881.60	(0,0)	3874-3904		3883.92
4195.92	(1,2)	4180-4210	4192,74	4197.49

CN B-X: a single line (λ4195Å)

error in [N/H]

- \otimes [N/H]_{CN} --> 0.027 dex !
 - due to spectral synthesis and parameters errors
 - ♦ HD016141 as "average" star

$$error[N/H]_{\mathbf{CNj}} = sqrt(e[N/H]_{\mathbf{Teff}}^2 + e[N/H]_{\mathbf{log}\,\mathbf{g}}^2 + e[N/H]_{\mathbf{[Fe/H]}}^2 + e[N/H]_{\mathbf{synthesis}}^2)$$

 $error[N/H]_{CNj} = sqrt(0.02^2 + 0.008^2 + 0.013^2 + 0.01^2) = 0.027 dex$

Results: [X/Fe] vs. [Fe/H]

Conclusions & Perspectives

- - ⊕ However, more CN lines and additional NH lines are requested...
 (e.g. CN B-X 4215Å)
- high precision of [C/H] and [N/H] based on these molecular lines
 - \otimes e[C/H]=0.004 dex & <math>e[N/H]=0.027 dex !
- * no statistical difference in [C,N/H] between solar analogues with and without giant planets (15 and 13 respectively)
 - * However, C and N abundances may be different...need for greater samples...
- * homogeneously redetermine the photospheric parameters to fine tune the spectral synthesis of molecular features and improve the final results...