Carbon and nitrogen

in a sample of solar analogues

> using molecular lines:
thin disc stars with/without giant planets

Rafael Botelho, André Milone
(INPE, Brazil) \& Ronaldo da Silva (SSDC/ASI, Italy)

andre.milone@inpe.br

Precision Spectroscopy 2017 - IAG/USP
1-4 August

Topics

- Sample \& high resolution spectra
- Selection of lines of $\mathrm{CH}, \mathrm{C}_{2}, \mathrm{CN}$ (and NH)
- Spectral synthesis
- Abundance results and their crrors
- Conclusions \& perspectives

Our results at beginning !!!

Takeda et al. (2005): [Fe / H]

Sample \& Spectra

© 28 out of 89 solar analogues from Takeda's sample of 160 nearby mid-F to early-K dwarfs and subgiants (Takeda+ 2005)
© blue spectra \& thin disc (our kinematics classification)
$\oplus 15$ are planet hosts (exoplanet.org on 20 Jul 2017)
$\oplus 5277 \leq \mathrm{T}_{\text {eff }} \leq 6277 \mathrm{~K} ; 3.84 \leq \log \mathrm{g} \leq 5.04 ;-0.33 \leq[\mathrm{Fe} / \mathrm{H}] \leq+0.33$ ($500 \mathrm{~K}, 0.60$ dex \& 0.33 dex around solar value)
$\left.\left.\oplus<e\left(\mathrm{~T}_{\text {eff }}\right)>=15 \mathrm{~K} ;<e(\log \mathrm{~g})\right\rangle=0.04 \mathrm{dex} ;<e([\mathrm{Fe} / \mathrm{H}])\right\rangle=0.016 \mathrm{dex}$

\otimes Spectra

© Okayama Observ. 1.88m+HIgh-Dispersion Echelle Spectrograph
© $\mathrm{R}=70,000$
© Blue : 3900-5100 $\AA<\mathrm{S} / \mathrm{N}>=320$
\oplus green-yellow : $5000-6200 \AA$ <S/N> $=207$ ($\mathrm{R}=90,000$ for 13 stars only, narrower slit)

Sample

age of sample stars: from 2 up to 9 Gyr

Sample

Selection of molecular lines

\otimes Visual inspection on a solar atlas to look for candidates of "isolated" /sensitive spectral features
\otimes Spectral synthesis diagnostic
\oplus Calibration to the solar spectrum

Spectral synthesis

© MOOG 2014 + VALD atomic \& Kurucz molecular lines \& $\mathrm{D}_{0}(\mathrm{CH})=3.464 \mathrm{eV}, \mathrm{D}_{0}\left(\mathrm{C}_{2}\right)=6.156 \mathrm{eV}, \mathrm{D}_{0}(\mathrm{CN})=7.65 \mathrm{eV}$
\otimes Castelli \& Kurucz (2004) model atmospheres
© Galactic [alpha/Fe]-[Fe/H] trend from nearby stars
© Solar chemical pattern by Asplund+2009 \& Grevesse+2010 (2) $\log \varepsilon(\mathrm{C})=8.43, \log \varepsilon(\mathrm{~N})=7.83, \log \varepsilon(\mathrm{O})=8.69 \& \log \varepsilon(\mathrm{Fe})=7.50$
\& Python script to derive $[\mathrm{X} / \mathrm{H}]$ from the spectral synthesis (rms based)

CH A-X: 8 lines

NOAO/IRAF V2.15.1a milone9Andres-MacBook-Pro.local Mon 15:05:06 10-Ju1-20

$\mathrm{i}=1.8$ L.D.C. $=0.61$ Vmacro $=3.7$ FWHMgauss $=0.062$

T_eff $=5777 . \log \mathrm{g}=4.44[\mathrm{M} / \mathrm{H}]=0.00 \quad \mathrm{~V}$ _mic $=0.90 \mathrm{~km} / \mathrm{s} \quad \mathrm{vt}=0.90$

NOAO/IRAF V2.15.1a milone0Andres-MacBook-Pro.local Mon 15:25:43 10-Jul-20
[vestab_vm 180.fits]: Vesta 45. ap:1 beam:106

CH A-X lines: example of calibration to Sun

$$
\begin{array}{lr}
\text { T_ }\{\text { eff }\}=5777 \mathrm{~K} & {[\mathrm{C} / \mathrm{H}]=-0.01} \\
\log (\mathrm{~g})=4.44 & {[\mathrm{Fe} / \mathrm{H}]=0.00} \\
\mathrm{v} \text { _ }\{\text { macro }\}=3.30 \mathrm{~km} / \mathrm{s} & {[\mathrm{C} / \mathrm{Fe}]=-0.01} \\
\mathrm{v} . \sin (\mathrm{i})=1.75 \mathrm{~km} / \mathrm{s} & \mathrm{rms}_{-}\{\min \}=0.0045
\end{array}
$$

CH A-X: 8 lines (electronic system of G band)

Line (\AA)	Vibrational band $\left(\mathrm{v}^{\prime}, \mathrm{v}^{\prime \prime}\right)$	Spectral range (\AA)	Blue Continuum point (\AA)	Red Continuum point (\AA)
4192.58	$(0,0)$	$4180-4210$	4185.91	4197.50
421.65	$(0,0)$	$4200-4230$	4205.70	4221.85
4213.87	$(1,1)$	$4200-4230$	4205.70	4221.85
4217.24	$(0,0)$	$4200-4230$	4205.70	4221.85
4218.74	$(1,1)$	$4200-4230$	4205.70	4221.85
4263.61	$(2,2)$	$4256-4286$	4257.85	4283.28
4263.97	$(2,2)$	$4256-4286$	4257.85	4283.28
4292.80	$(0,0)$	$4276-4307$	4287.25	4295.52

2 lines of $\mathrm{C}_{2} \mathrm{D}-\mathrm{A}$ (Swan System): example for $(0,0) \lambda 5165 \AA$

(2) variance-weighted of $[\mathrm{C} / \mathrm{H}]_{\mathrm{CH}}$ and $[\mathrm{C} / \mathrm{H}]_{\mathrm{C} 2}$
© errors in $[\mathrm{C} / \mathrm{H}]_{\mathrm{CHj}}$ and $[\mathrm{C} / \mathrm{H}]_{\mathrm{C} 2 j}$ of individual lines

* due to spectral synthesis and parameters errors
© HD016141 as "average" star
\oplus typical lines: CH B-X $\lambda 4217 \AA$ \& C_{2} D-A $\lambda 5165 \AA$
$\operatorname{error}[\mathbf{C} / \mathbf{H}]=\operatorname{sqrt}\left(\mathbf{e}[\mathbf{C} / \mathbf{H}]_{\text {Teff }}^{2}+\mathbf{e}[\mathbf{C} / \mathbf{H}]_{\operatorname{logg}}^{2}+\mathbf{e}[\mathbf{C} / \mathbf{H}]_{[\mathrm{Fe} / \mathbf{H}]}^{2}+\mathbf{e}[\mathbf{C} / \mathbf{H}]_{\text {synthesis }}^{2}\right)$ $\operatorname{error}[\mathrm{C} / \mathrm{H}]_{\mathrm{CHj}}=\operatorname{sqrt}\left(0.007^{2}+0.005^{2}+0.000^{2}+0.01^{2}\right)=0.013 \mathrm{dex}$ $\operatorname{error}[\mathrm{C} / \mathrm{H}]_{\mathrm{C} 2 \mathrm{j}}=\operatorname{sqrt}\left(0.008^{2}+0.002^{2}+0.009^{2}+0.01^{2}\right)=0.016 \mathrm{dex}$

$[\mathrm{C} / \mathrm{H}]_{\mathrm{c} 2}$ vs. $[\mathrm{C} / \mathrm{H}]_{\mathrm{CH}}$

$\mathrm{v}_{\text {macto }}$ \& $\mathrm{V} \cdot \sin (\mathrm{i})$

Santos et al. (2016)

no isotopic data
smoothing=r Vsini= 1.8 L.D.C. $=0.61$ Vmacro= 3.7 FWHMgauss= 0.064

CN B-X (CN Violet)

Line (\AA)	Vibrational band $\left(\mathrm{v}^{\prime}, \mathrm{v} "\right)$	Spectral range (\AA)	Blue Continuum point (\AA)	Red Continuum point (\AA)
3841.72	$(5,5)$	$3839-3869$	-	3866.63
3851.26	$(2,2)$	$3839-3869$	-	3866.64
3880.35	$(0,0)$	$3874-3904$	-	3883.92
3880.70	$(0,0)$	$3874-3904$	-	3883.92
3881.01	$(0,0)$	$3874-3904$	-	3883.92
3881.60	$(0,0)$	$3874-3904$	-	3883.92
4195.92	$(1,2)$	$4180-4210$	4192.74	4197.49

CN B-X: a single line ($\lambda 4195 \AA$)

 N0A0/IRAF V2.15.1a milone日Andres-MacBook-Pro.local Mon 16:01:41 10-Jul-20

error in $[\mathrm{N} / \mathrm{H}]$

$\otimes[\mathrm{N} / \mathrm{H}]_{\mathrm{CN}}->0.027 \mathrm{dex}!$
\oplus due to spectral synthesis and parameters errors
\oplus HD016141 as "average" star
\oplus line: CN B-X $\lambda 4195 \AA$

Results: [X/Fe] vs. [$\mathrm{Fe} / \mathrm{H}]$

Conclusions \& Perspectives

© a list of CH A-X, $\mathrm{C}_{2} \mathrm{D}-\mathrm{A}$ and CN B-X lines at the blue and green regions
\oplus However, more CN lines and additional NH lines are requested... (e.g. CN B-X 4215A)
\otimes high precision of $[\mathrm{C} / \mathrm{H}]$ and $[\mathrm{N} / \mathrm{H}]$ based on these molecular lines
$\otimes e[C / H]=0.004$ dex \& e $[N / H]=0.027$ dex !
\circledast no statistical difference in [C,N/H] between solar analogues with and without giant planets (15 and 13 respectively)
\otimes However, C and N abundances may be different...need for greater samples...
\otimes homogeneously redetermine the photospheric parameters to fine tune the spectral synthesis of molecular features and improve the final results...

