

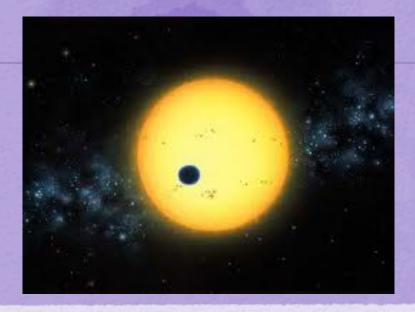
2000-04-26 16:29

Starspot Magnetic Fields

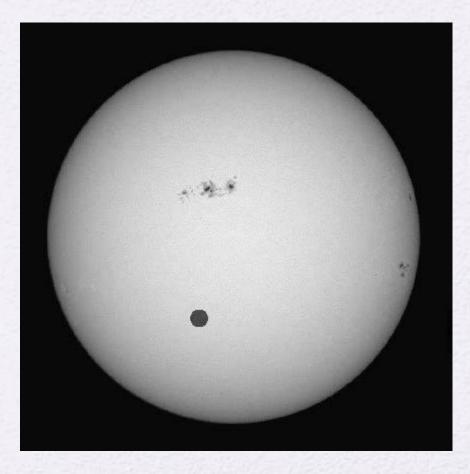
Adriana (Silva) Valio

CRAAM – Universidade Presbiteriana Mackenzie

Precision Spectroscopy: Toward Earth 2.0 – 01-04/08/2017

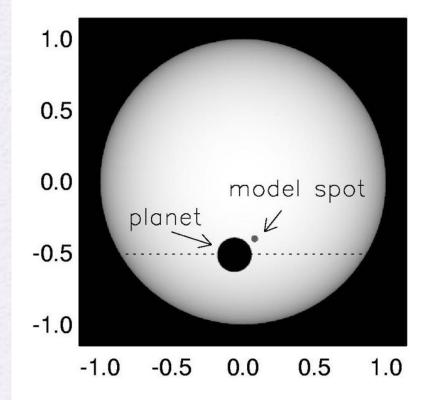

Spot detection during transit

- Very likely, all cool stars with a convective envelope like the Sun will have spots on their surfaces
- 2731 (74%) of them transit their host star (31/07/2017);
- During one of these transits, the planet may pass in front of a spot group and cause a detectable signal in the light curve of the star;


Planetary Transit Model

Starspots

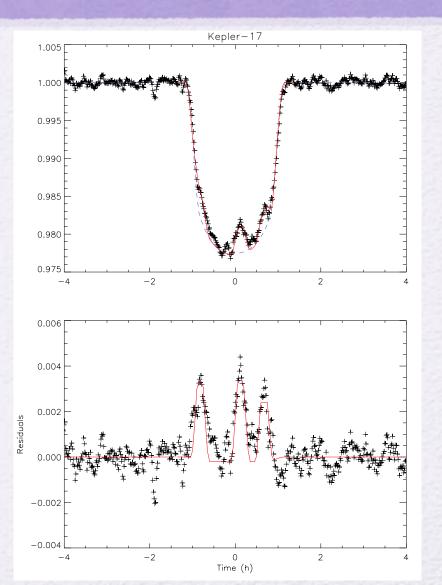
- Method that simulates planetary transits: uses the planet as a probe to study starspots (Silva, ApJ Letters, 585, L147-L150, 2003)
- Stellar activity infer spots physical characteristics:
 - Size (area coverage)
 - Intensity temperature magnetic fields
 - Location (long & lat)
- Stellar properties:
 - Rotation period
 - Differential rotation
 - Activity cycle


Transit Model

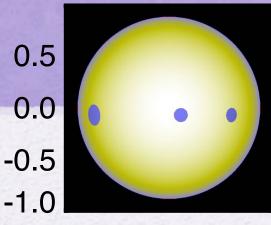
- Star: image of the Sun or a synthesized image of a star with limb darkening;
- Planet: opaque disk of radius r/ R_s
- Transit: every 2 min, the planet is centred at its calculated position in a circular orbit (a_{orb}/ R_s and i) with zero obliquity.
- Light curve flux is the sum of all pixels in the image.
- Input parameters: P_{orb}, r/R_s, a_{orb}/R_s, and i

Spot model

- Spot: 3 parameters:
 - Intensity: measured with respect to stellar maximum intensity (center);
 - Size: measured in units of planetary radius;
 - Position: Longitude and Latitude (restricted to the transit band).
 - Foreshortenning taken into account



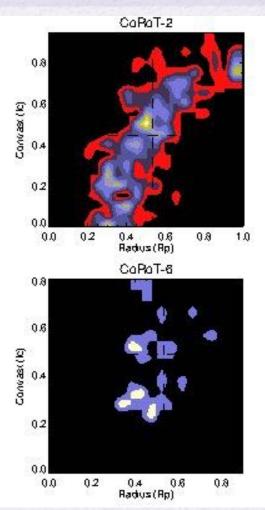
Modeling of observations: CoRoT and Kepler stars

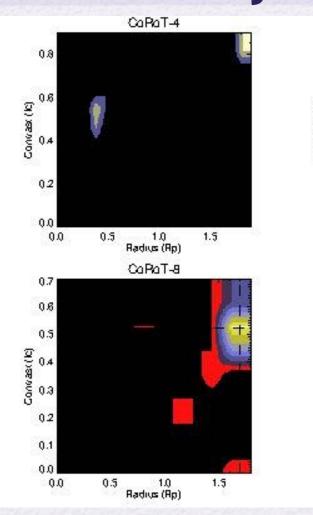

Stellar and Planetary parameters

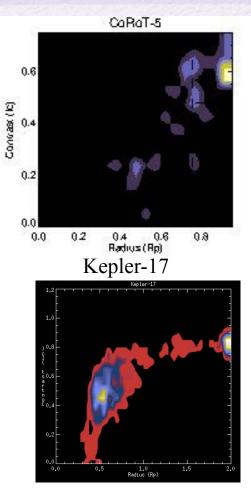
Star	CoRoT-2	CoRoT-4	CoRoT-5	CoRoT-6	CoRoT-8	CoRoT-18	Kepler-17
Spectral type	G7V	F8V	F9V	F9V	K1V	G9V	G2V
Mass (M _{sun})	0.97	1.10	1.0	1.055	0.88	0.95	1.16
Radius (R _{sun})	0.902	1.17	1.19	1.025	0.77	1.0	1.05
Prot (d)	4.54	8.87	26.6	6.35	21.7	5.4	12.28
Teff (K)	5625	6190	6100	6090	5080	5440	5781
Age (Gyr)	0.13-0.5	0.7-2.0	5.5-8.3	1.0-3.3	2.0-3.0	?	>1.78
Planet							
Mass (M _{jup})	3.31	0.72	0.467	2.96	0.22	3.47	2.45
Radius (M _{star})	0.172	0.107	0.120	0.117	0.090	1.31	1.312
Porb (d)	1.743	9.203	4.038	8.886	6.212	1.90	1.49
a (R _{star})	6.7	17.47	9.877	17.95	17.61	6.35	5.31
Latitude (°)	-14.6	0	-47.2	-16.4	-29.4	-22.8	-4.6

Data fit

Kepler-17

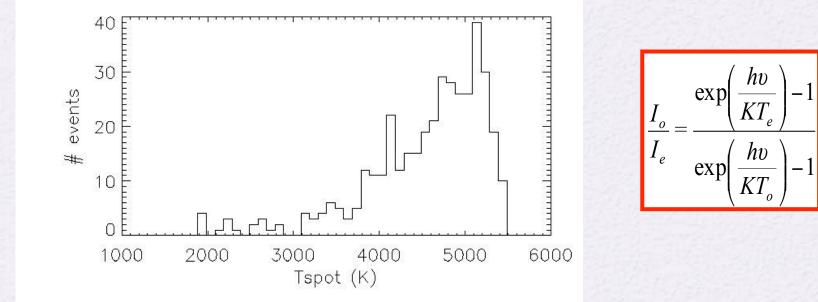

-1.0-0.50.0 0.5


- N spots per transit, at fixed Latitude
- Fit parameters:
 - Longitude: between -70° and +70°
 - Intensity: $0 1 I_c$


- Radius: $f_a R_p$

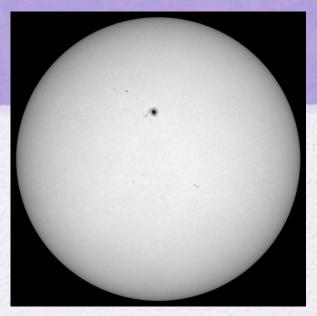
Spots characteristics

Results: spots size x intensity



Intensity to temperature

Black body emission for stellar photosphere and spots



 $T_{eff} = 5625 \text{ K} (CoRoT-2)$ $T_{spot} = 4700 \pm 300 \text{ K} (Sun: 3500 - 4500 \text{ K})$

Eduardo Spagiari

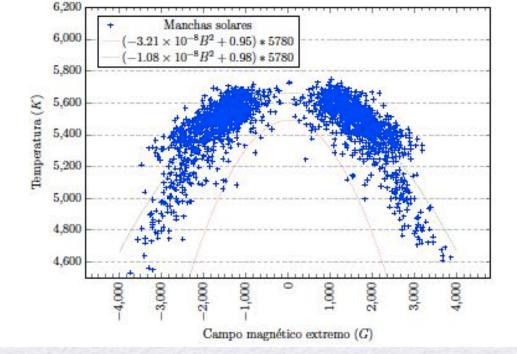
Sunspots

- Empirical relation between the intensity of sunspots and their magnetic field.
- Solar data from the MDI instrument on board the SOHO satellite.
- A total of 2132 spots were identified within the solar images twice a month for cycle 23 (1996-2007).
- Only spots located between longitudes -40° and 40° were analysed.
- Sunspot area and average intensity with respect to the central disk intensity were determined
- The magnetic field was estimated from the corresponding magnetograms, both the maximum and minimum magnetic intensity were recorded within the same area used in the white light images.

Sunspots T(B)

Following Dicke (1970):
$$\frac{T}{T_e} = -3,21 \cdot 10^{-8} \cdot B^2 + 0.95$$

$$\frac{T}{T_e} = \alpha \cdot \mathbf{B}^2 + \sigma$$

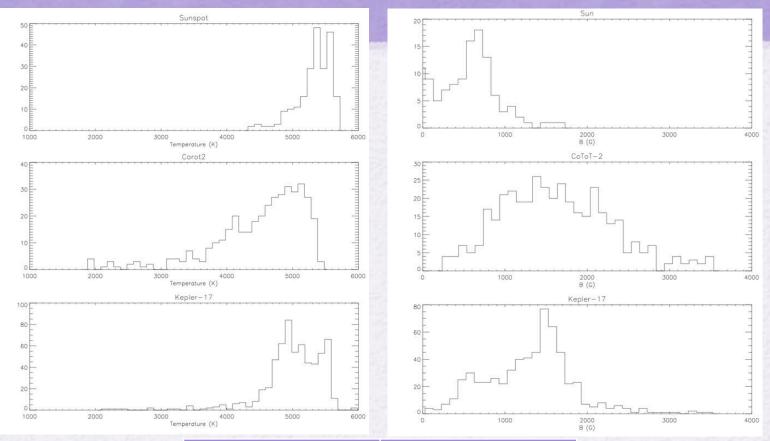

B_{max}

(-1.08 <u>+</u> 0.04) x 10⁻⁸

0.98 + 0.03

α

σ



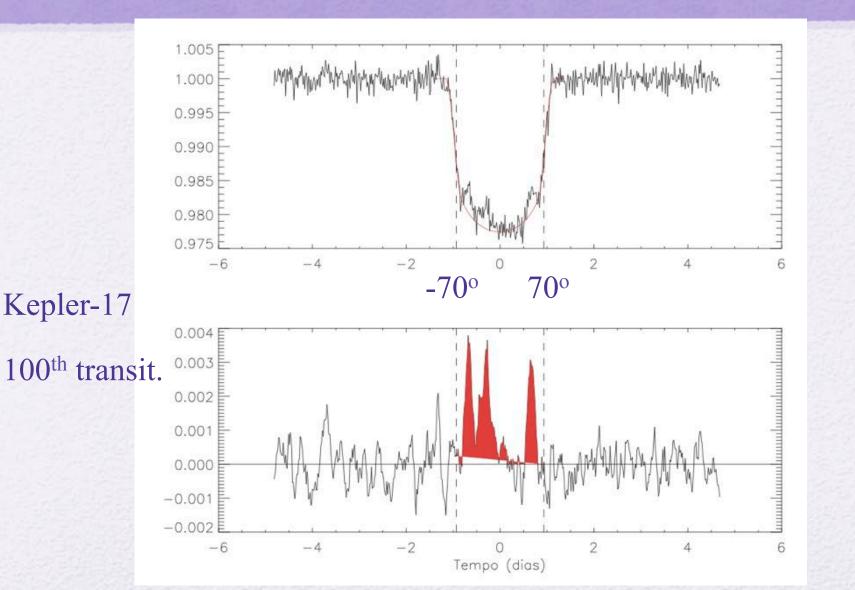
Other stars

- Two stars with transiting planets were analyzed: CoRoT-2 $(T_{eff}=5575 \text{ K})$ and Kepler-17 $(T_{eff}=5781 \text{ K})$.
- Small variations in the transit light curves of these stars have been fit yielding the characteristics of:
 - 392 spots CoRoT-2
 - 615 spots Kepler-17
- Spot intensity => Temperature => Magnetic Field

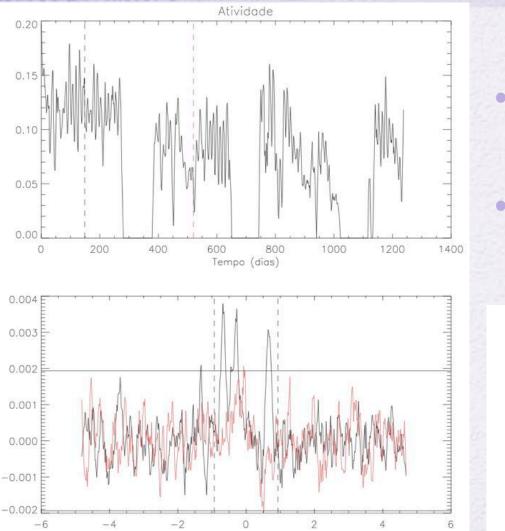
 $\frac{T}{T_e} = -1.08 \times 10^{-8} \cdot B^2 + 0.98 \Longrightarrow B = 9622 \sqrt{0.98 - \frac{T}{T_e}}$

B_{max}

Star	B _{max} (Gauss)
Sun	700 <u>+</u> 350
CoRoT-2	1700 <u>+</u> 700
Kepler-17	1400 <u>+</u> 500

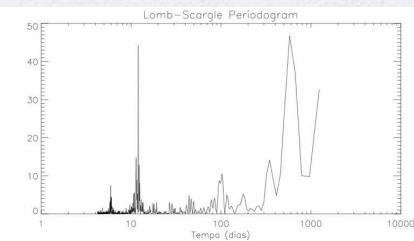

Spots characteristics

Star	CoRoT-2	CoRoT-4	CoRoT-5	CoRoT-6	CoRoT-8	CoRoT-18	Kepler-17	Sun
Radius (Mm)	55 <u>+</u> 19	51 <u>+</u> 14	75 <u>+</u> 17	48 <u>+</u> 14	82 <u>+</u> 21	65 <u>+</u> 19	80 <u>+</u> 50	12 <u>+</u> 10
Area (%)	13	6	13	9	29	13	11	< 1
Tspot (K)	4600 <u>+</u> 700	5100 <u>+</u> 500	5100 <u>+</u> 600	4900 <u>+</u> 600	4400 <u>+</u> 600	4800 <u>+</u> 600	5100 <u>+</u> 500	4800 <u>+</u> 400
T _{eff} (K)	5625	6190	6100	6090	5080	5440	5780	5780
B _{max} (G)	1700 <u>+</u> 700						1400 <u>+</u> 500	700 <u>+</u> 350

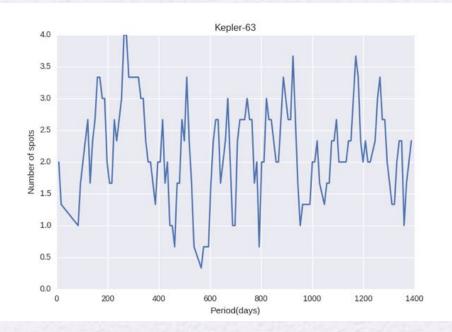

Magnetic Cycles

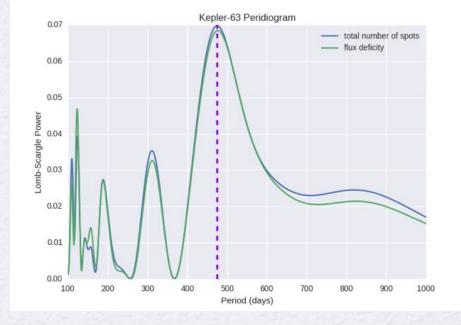
Raissa Estrela

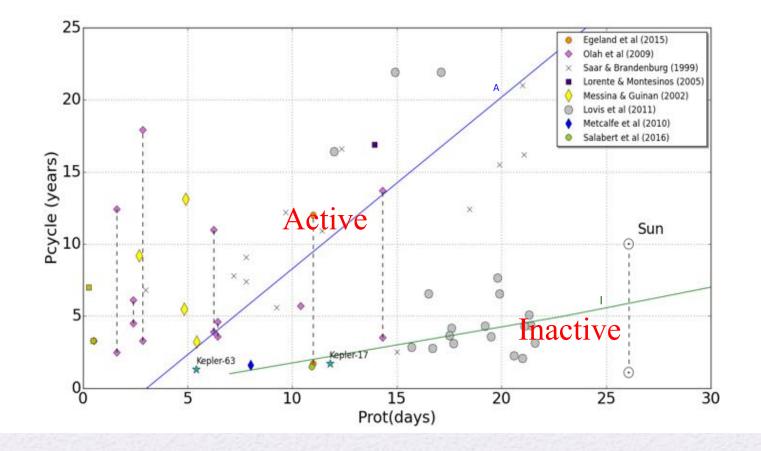
Magnetic activity



Magnetic cycle


Magnetic activity cycle of 579 days or 1.58 year


Rotation period of 12.4 d


Kepler-63

P = 1.3 yr

P_{cycle} x P_{rot}

Summary

Assuming that the decrease in intensity is caused by intense magnetic fields, and that the relation follows that of the Sun:

$$\frac{T}{T_e} = -1.08 \times 10^{-8} \cdot B^2 + 0.98 \Longrightarrow B = 9622 \sqrt{0.98 - \frac{T}{T_e}}$$

- Applied to CoRoT-2 and Kepler-17 yields max magnetic fields of 1700 and 1400 G;
- Evidence of a magnetic cycle with about 1.6 yr for Kepler-17 and 1.3 yr for Kepler-63.

Conclusion

- The modelling of small variations observed in the transit light curves yields:
 - Spots physical characteristics (size, temperature, location – active longitudes, evolution/lifetime, surface area coverage, magnetic fields) - (Silva 2003, ApJL, 585, L147)
- Multiple transits:
 - Stellar rotation (Silva-Valio 2008, ApJL, 683, L179)
 - Stellar differential rotation (Silva-Valio et al. 2010, A&A, 510, 25, Silva-Valio & Lanza 2011, A&A, 529, 36)
- For longer observing period:
 - Stellar activity cycles

OBRIGADA!

IDL and Python code ECLIPSE available Email: adrivalio@gmail.com