Non-Gaussian CMB signatures in ACDM cosmological models
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» WMAP data have confirmed the concordance cosmological model ACDM.
This model corresponds, , to the data best-fit.
In other words, there are models with slightly different hypotheses and similar
(but not equal) values for the cosmological parameters that fit the WMAP
data as well as the ACDM concordance model (see:
http:\\lambda.gsfc.nasa.gov\product\map\dr4\ parameters.cfm).

» One such parameter, which is fundamental for our understanding of the

primordial universe, is the _ of primordial fluctuations - The

main difficulty to establish the correct value is that it is related
to the Angular Power Spectra at the largest scales (i.e. low multipoles):
precisely the region where the cosmic variance uncertainty dominates.
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» We shall study the effects caused on the CMB statistics (i.e. Gaussianity) of
three sets of Monte Carlo CMB maps produced by seeding them with slightly
differ- ent Angular Power Spectra, obtained using the spectral indexes: -:
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Ang.Power Spectra: WMAP data and ACDM models

[DITI TN el Wolgel o]l similar APS ~ with #g cosmological parameters
Example: APS with #s spectral indexes: ns = - - -
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Then we generate 3 sets of MC CMB maps according to these APS



Gaussian analyses in Monte Carlo CMB maps
We use two recently defined estimators: Skewness—map & Kurtosis—map
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We calculate the S— and K—maps from the three sets of MC CMB
maps, then compute their . Then use them to
quantify the CONFIDENCE LEVEL of the spectra {S;"™*"}, {K}"*"}.
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Results: _ analyses of S— and K—maps
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» Our results show that, in the mean , the Gaussianity property of these
sets of Monte Carlo maps is different, and this fact seems to be crucial
when one has to quantify the confidence level in CMB data analyses.
That is to say, the statistical-significance evaluation of a result

concerning a CMB map [laalele[SRe[SeXale[Toial.



Conclusions (first part)

» We analyzed the APS of S— and K—maps produced from 3 sets
of MC CMB maps (seeded by ACDM spectra with [iigl= 0.96,
0.98, and 1.00, respectively). Our results show that these maps
contain different amounts of non-Gaussianity.

The smaller non-Gaussian deviations appear in the fA8i=[1.00 case.

» Differently as claimed, MCs seeded on the ACDM concordance
model spectrum (Jii@ = J0888)) can not be considered as
equivalent to simulated Gaussian CMB maps.

» = Gaussian confidence levels are [relative to the model assumed.

References

» AB and M.J. Rebougas, Phys. Rev. D 79, 063528 (2009),
arXiv:0806.3758;

» Int. J. Mod. Phys. A 24, 1664 (2009), arXiv:0907.0527;
arXiv:0912.0269



Searching for primordial non-Gaussianity in CMB data



Density Fluctuation Field: dp

The statistical properties of a fluctuation field 0p(X) = [p(X) — p]/ P
can be characterized by the n-point moments (dp") ({) = ensemble

average). By definition (0p) = 0. JLRUERISCEEREETESEN], then the

probability distribution for dp is

P(dp) = exp[-dp?/(20%)],

1
V2T o
the even moments 2n = 2,4, ... are

(6p°") = (2n — D)1 (6p*)" = (2n — 1)1l 02"

where 02 = (dp?) is the variance (or 2-point correlation) of the field,
and gayEKelels M IINI eI IEW4ged. | his implies that for a Gaussian field
all the information is contained in the 2-point correlation function.



Primordial non-Gaussianity

The inflationary scenario establish the structure formation from
primordial adiabatic density perturbations, where such perturbations
can be originated by quantum fluctuations, e.g.,

» in the single scalar field (the ‘inflaton’) responsible for the
standard slow-roll inflation,

» in a second scalar field in non-standard multi-field inflation,
producing different amounts of non-Gaussian density perturbations.

In any case, for a non-Gaussian field the lowest-order deviations from
Gaussianity comes from the 3-point correlation function (equivalently
the bispectrum, its Fourier-space counterpart.) which is not zero:
(6p3) # 0. Symmetric configurations of the 3-point correlation function
produces non-Gaussianity of equilateral type and orthogonal type.



The non-Gaussianity achieved in multi-field inflation (or in cyclic /
ekpyrotic universe models) is termed non-Gaussianity of local type.

Let us concentrate on local non-Gaussianity. It can be described by a
primordial gravitational potential ¢, a non-Gaussian random field
written in terms of a Gaussian random field | through

P(X) = ¢ (X) + fNLPNL(K)

where
Oy = f — (P]).

In this way the amplitude of the primordial non-Gaussianity is in the
dimensionless parameter [fiy . Non-Gaussianity in the density field is
then obtained from that in the gravitational potential through the
Poisson eqn. And since the density field interacts with the radiation
field, primordial non-Gaussianity in ¢ will be encoded in the CMB data.



Primordial non-Gaussianity in CMB data

In order to simulate MC CMB maps containing non-Gaussianity of local
type the sets {3eLm} and {a, L} are produced through the steps*:

(i) Generate the multipole moments of a purely Gaussian gravitational
potential ®| ,,(r) as a function of conformal distance.

(i) Calculate the spherical harmonic transform to derive the correspon-
ding expression in pixel space, @ (r).

(iii) Compute ®p (r) = ®2(r) — (PE(r)).

(iv) Inverse transform to spherical harmonic space to obtain ®pi 4, (r).
(v) Solve the radial integral equations to obtain a}m, i=L, NL,

ay, = 7T/c/rr2 ¢gm(r)/dk k2g} (k) jo(kr),

where gy and j; are the transfer function and the sph. Bessel function, respectively.

* Elsner & Wandelt, arXiv: 0909.0009



Primordial non-Gaussianity in CMB data

{a}. }— Gaussian MC CMB:
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Primordial non-Gaussianity in CMB data

{a/,,} — Gaussian MC CMB:
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Primordial non-Gaussianity in CMB data

{a/,,} — Gaussian MC CMB:
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Limits of Primordial non-Gaussianity in WMAP data

Limits for according to WMAP-7yr: —10 < fy < 74

TABLE 2
CONFIDENCE LIMITS ON DEVIATIONS FROM THE SIM
EXCEFT FOR DARK

RY OF THE B!

LE (FLAT, GAUSSIAN, ADIABATIC, POWER-LAW
FARAMETERS

ACDM smoDEL

WMAP+BAO+SN* WMAP+BAO+ Ho

r < 0.20
=0.085 < dn,/dink <
0.0178 < Sle
a0 o

"SN” denctes the “Constitution” sample
w

f Tyme In me compiled by Hicken ct al. (2008b), which is an extension of the “U
sample (Kownlski o al. SN =
e

5-year P+BAO+ paramesers presented in Komatsu es al. (20
e the parametess in this column can be compared directly to the 5-year W
+BAQ+ o™ parnmeters, as the other oo ions af the supernova data

e Section 3.2.4 for more discussion. The SN data will be wsed

dark crergy properties. See Sectic
In tiw farem of the tonsee-to-scalar ratio, v, ot & = 0.002 Mpc
“Larson et al,

e b'\ lom. \fl!.,
t.) = 1.5

, the polarization rotation angle is Aa = M1 23
syst.), where the fin atisticnl and the second erx

"Far “\! P+ l RG+ |
Tl‘.c 9.\,‘ I T

and 2.8 < Nog < 5.9 (56
arginalized over.

2008), we find —5§ < figf™ <

Let us use our S and K indicators to analyze two sets of 1000 MC
CMB maps each: one with the other with

— L .




Primordial non-Gaussianity analyses in CMB data
Ang. Power Spectra of S- & K-maps from MC with f; — 10 and fyy = 74
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Conclusions (Primordial non-Gaussian analyses)

» We study primordial Gaussian deviations of local type, in amounts
consistent with the WMAP7 limits: —10 < fy < 74.

» Our non-Gaussian indicators reveals (and quantify) the presence of
these tiny deviations from Gaussianity (i.e., fyj 7# 0), when
compared with the ACDM McC cMB data (i.e., fy = 0).

» The form of the APS, i.e. {5/}, {K¢}, at small angular scales
could be a characteristic signature of this type of non-Gaussianity.
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