
Lowered Nonextensive Stellar Distribution

J. M. Silva 1 , R. E. de Souza 2 and J. A. S. Lima 3

Departamento de Astronomia, Universidade de São Paulo, USP, 05508-900 São
Paulo, SP, Brazil

Abstract

The structure of globular clusters and elliptical galaxies are described in an unified
way through a new class of lowered models inspired on the nonextensive kinetic the-
ory. These power law models are specified by a single parameter q which quantifies
to what extent they depart from the class of lowered stellar distributions discussed
by Michie and King. For q = 1 the Michie-King profiles are recovered. However, for
q < 1 there is a gradual modification in the shape of the density profiles which de-
pends on the degree of tidal damage imposed on the model, thereby also providing a
good fit for globular clusters. It is also shown that a subclass of these models, those
with a deeper potential and q slightly less than 1, present a distribution resembling
the de Vaucoulers r1/4 profile which yields a good description of the structure of
elliptical galaxies. This subset of models follows this trend, with a slight departure
over nearly 10 orders of magnitudes.
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1 Introduction

It is widely known that the Maxwell-Boltzmann isothermal distribution is
somewhat truncated by the galactic tidal field responsible for the capture of
stars that become loosely bound to the main structure. This means that the
ideal distribution function (DF) is depopulated due to the stars escaping from
the system. As shown by Michie (Michie 1961; Michie 1963a; Michie 1963b;
Michie 1963c; Michie 1963d) to the case of non-rotating, spherically sym-
metric systems, the resulting distribution may be obtained by solving the
Fokker-Planck equation. This class of distributions were rediscussed by King
(King 1966; King 1965; King 1978; King 1981; King 1962) who showed that
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they give a good representation for the observed density profiles of globular
clusters (GC). The phase space density for such models may be expressed
as (Michie 1963a; Michie 1963b; Michie 1963c; Michie 1963d; Spitzer 1987;
Binney & Tremaine 1994)

f(ε) = ρo(2πσ2)−3/2
[
e−ε − 1

]
ε < 0 (1)

f(ε) = 0 ε ≥ 0

where the dimensionless quantity ε = (1
2
v2 + Φ(r))/σ2 is the energy of any

given star in units of the average thermal energy (Φ is the gravitational po-
tential and σ is the velocity dispersion). Actually, in the case of GC, some in-
dependent numerical analysis (Hodge & Michie 1969; Peterson & King 1975;
Peterson 1976) have confirmed the quantitative support provided by such dis-
tributions usually called lowered models in the literature.

Unfortunately, these Michie-King models do not describe many elliptical galax-
ies whose smoothness and symmetry are even more striking than those pre-
sented by GC. Actually, instead of a specific lowered distribution, the profiles
of some giant elliptical galaxies are very well described by the de Vaucouleurs
r1/4 law which provides sometimes a remarkable fit over 10 orders of magni-
tudes of surface brightness, see for instance, (de Vancoulers & Capaccioli 1979).
Conversely, there are also some elliptical galaxies (like NGC 4472) that are not
fitted by the de Vaucouleurs law as they are by the lowered Michie-King mod-
els. Such a state of affairs is quite uncomfortable both from a methodological
and a physical viewpoint. In particular, it opens a large window for adjust-
ing mechanisms whose primary objective is somewhat explain the existence of
individual profiles even for the spherically symmetrical case.

On the other hand, an increasing attention has been paid to possible nonex-
tensive effects in the fields of kinetic theory and statistical mechanics (see
http://tsallis.cat.cbpf.br/biblio.htm for a regularly updated bibliography on
this subject). The main motivation is the lack of a comprehensive treatment
including gravitational and Coulombian fields, or more generally, any long
range interaction for which the assumed additivity of the entropy present in
the standard approach is not valid. Inspired on such problems, Tsallis proposed
the following q-parameterized nonextensive entropic expression (Tsallis 1988)

Sq = kB
[1−∑

i p
q
i ]

(q − 1)
, (2)

where kB is the standard Boltzmann constant, pi is the probability of the i-th
microstate, and q is a parameter quantifying the degree of nonextensivity. In
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the limit q = 1 the standard extensive formula, namely

S = −kB

∑

i

pi ln pi , (3)

is recovered. One the most relevant properties of Tsallis’ nonextensive en-
tropy is its pseudoadditivity. Given a composite system A+B, constituted by
two subsystems A and B, which are independent in the sense of factorizabil-
ity of the microstate probabilities, the Tsallis measure verifies Sq(A + B) =
Sq(A) + Sq(B) + (1− q)k−1

B Sq(A)Sq(B), which in the limit q → 1, Sq reduces
to the standard logarithmic measure, and the usual additivity of the extensive
statistical mechanics is recovered. In other words, |q − 1| is a measure of the
lack of extensivity of the system.

Later on, the first attempts for exploring the kinetic route associated to Tsal-
lis entropy approach appeared in the literature. The original kinetic deriva-
tion advanced by Maxwell (Maxwell 1860) was generalized to include power
law distributions as required by this enlarged framework (Sau et al. 2001;
Scarfone et al. 2008; Jiulin 2007; Silva et al. 1998). In particular, it was shown
that the equilibrium velocity q-distribution is given by

f(v) = Bq

[
1− (1− q)

mv2

2kBT

]1/(1−q)

, (4)

where the Bq is a q-dependent normalization constant which reduces to the
Maxwellian value for q = 1. As shown in (Silva et al. 1998), the above dis-
tribution is uniquely determined from two simple requirements: (i) isotropy
of the velocity space, and (ii) a suitable nonextensive generalization of the
Maxwell factorizability condition, or equivalently, the assumption that F (v) 6=
f(vx)f(vy)f(vz). More recently, the kinetic foundations of the above distribu-
tion were investigated in a deeper level through the generalized Boltzmann’s
transport equation (Lima et al. 2001) which incorporated the nonextensive ef-
fects using two different ingredients. First, a new functional form to the kinetic
local gas entropy, and, second, a nonfactorizable distribution function for the
colliding pairs of particles whose physical meaning is quite clear: the Boltz-
mann chaos molecular hypothesis is not valid in this extended framework.
It was also shown that the kinetic version of the Tsallis entropy satisfies an
Hq-theorem, and more important still, the q-parameterized class of power law
velocity distributions emerged as the unique nonextensive solution describing
the equilibrium states.

In the astrophysical context, the nonextensive equilibrium velocity distribu-
tion related to Tsallis’ statistics has been applied to stellar collisionless sys-
tems (Plastino & Plastino 1993) to the peculiar velocity function of galaxies
clusters (Lavagno et al. 1998), as well in studies of gravothermal instability
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(Taruya & Sakagami 2002). More recently, we have determined the radial and
projected density profiles for two large classes of isothermal stellar systems
with basis on the equilibrium power law q-distributions (Lima & de Souza 2005).
Such models are based in the following phase space density

f(ε) =
ρoCq

(2πσ2)3/2
[1− (1− q)ε]1/(1−q) (5)

where the q-parameter quantifies the nonadditivity property of the gas entropy.
For generic values of q 6= 1, this DF is a power law, whereas for q = 1 it
reduces to the standard Maxwell-Boltzmann distribution function. Formally,
this result follows directly from the known identity limd→0(1+dy)

1
d = exp(y) as

can be seen in (Abramowitz & Stegun 1972). The quantity Cq is a q-dependent
normalization constant given by (Lima et al. 2002)

Cq = (1− q)1/2
(

5− 3q

2

) (
3− q

2

) Γ(1
2

+ 1
1−q

)

Γ( 1
1−q

)
q ≤ 1 (6)

and

Cq = (q − 1)3/2
(

3q − 1

2

) Γ
(

1
1−q

)

Γ
(

1
1−q

− 3
2

) q ≥ 1, (7)

which reduce to the expected result in the limit q = 1.

With basis on the ideas of Michie (Michie 1961; Michie 1963a; Michie 1963b;
Michie 1963c; Michie 1963d) and King (King 1966; King 1965; King 1978; King 1981;
King 1962), in this work we propose a new class of lowered nonextensive mod-
els which are naturally associated with the above equilibrium distribution.
It will be explicitly assumed that the nonextensive isothermal q-distribution
discussed by (Lima et al. 2002) cannot strictly be attained for a real stellar
system due to the presence of tidal effects with the mean local gravitational
field, stellar encounters or any other relaxation mechanism. This means that
such mechanisms must gradually modify the ideal velocity distribution in such
a way that the final distribution drop to zero at a finite velocity. Hence, one
may suppose that the stellar system approaches as far as it can to a quasi
power law final state which collectively can be termed nonextensive lowered
spheres. As we shall see, this new class of models may potentially describe
both classes of spherically symmetric systems, namely globular clusters and
elliptical galaxies, thereby reinforcing the possibility that nonextensive effects
may have a considerable importance in the astrophysical domain.

The paper is organized as follows. Next section we set up the basic equations
defining the lowered nonextensive models. In section III we discuss a large
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class of density profiles obtained trough a numerical solution of the Poisson
equation. Although reproducing the Michie-King models exactly for q → 1,
we show that for q smaller than unity the standard profiles are moderately
modified, and therefore, they also provide a good representation for the struc-
ture of GC. In section IV we discuss a specific q-lowered model characterized
by a relatively deep central potential. It resembles the de Vaucouleurs law be-
ing therefore potentially useful to describe the structure of elliptical galaxies.
This model has an extra bonus: it predicts the existence of small fluctuation
similar as that ones appearing in the profiles of early type galaxies, as recently
discussed by Caon (Caon et al. 1997) based on the Sérsic r1/n law. Finally, a
summary and the main conclusions are presented in section V.

2 Lowered Nonextensive Stellar Distribution

Let us now consider a class of lowered nonextensive q-distribution defined by

f(ε) =
ρoCq

(2πσ2)3/2

[
(1− (1− q)ε)1/(1−q) − 1

]
ε < 0 (8)

f(ε) = 0 ε ≥ 0

which arises naturally from our earlier adoption of the isothermal power law
distribution to the unperturbed collisionless system (cf. equations (1) and (2)).
This means that to the accuracy of the Michie-King approximation, the above
distribution is the simplest nonextensive extension representing the steady
state solution of the Fokker-Planck equation. The corresponding mass density
profile can be obtained by integrating this distribution over the whole pos-
sible energy interval. It thus follows that the density profile is given by the
expression

ρ =
2ρoCq√

π

0∫

φ

[
(1− (1− q)ε)

1
1−q − 1

]
(ε− φ)1/2dε (9)

where φ = Φ/σ2 is the dimensionless potential, and the integration limits have
been defined by keeping in mind that only bounded objects are present in the
stellar distribution. Once again, this expression asymptotically approaches the
lowered Michie-King models when q → 1. This expression linking the mass
density to the gravitational potential does not have a closed analytical form
and therefore must be numerically integrated. Now, in order to simplify the
numerical algorithm, it proves convenient to introduce the variable, ε = χφ,
with (6) assuming the form
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ρ =
2ρoCq√

π
(−φ)3/2

1∫

0

[
(1− (1− q)φχ)

1
1−q − 1

]
(1− χ)

1
2 dχ (10)

which is more amenable to be solved by numerical discretization. Another ben-
efit from this expression is that we can easily verify that the relation between
the mass density and the gravitational potential has two asymptotic regimes.
In the first limit, when φ ' 0, we are close to the external surface and we can
expand the power expression appearing inside the brackets using the binomial
expansion to obtain

ρ ' 8ρoCq

15
√

π
(−φ)5/2 φ ' 0 (11)

showing that the external structure of these models correspond to a polytropic
sphere with Lane-Emden index n = 5/2. In fact for −φ ≥ 1 this expression
gives a good representation of the model as we can verify from Figure 1. In
the internal structure we can find another regime in those regions where the
gravitational potential is sufficiently large so that (1 − q)φχ >> 1 in which
case,

ρ ∝ (−φ)
5−3q

2(1−q) (12)

showing that in this limit the internal structure is also described by a poly-
tropic sphere whose Lane-Emden index, n = (5−3q)/2(1−q), depends on the
nonextensive parameter. In fact as showed by Lima et al. (Lima et al. 2002),
the nonextensive isothermal distributions have a profile density corresponding
exactly to this polytropic structure. Therefore, in those models were the cen-
tral potential is sufficiently deep, the internal structure is closely described by
this approximation. In particular, we can verify that the model q = 5/7 cor-
responds to a polytropic sphere with n = 5 which is the limiting case dividing
the Lane-Emden family in a branch having finite mass and radius from those
having infinite radius and mass. Therefore, in the absence of tidal truncation,
models satisfying the restriction 5/7 < q ≤ 1 have infinite mass and infinite
radius and are the ones that we will give more attention bellow. We can also
see that when q = 0 the whole structure is exactly represented by a n = 5/2
polytropic sphere. In figure 1 we show dependence of the mass density as a
function of the gravitational potential for a set of representative values of the
q index. We can see from this plot that in the general case the whole structure
can be described as the result of a smooth transition between n = 5/2 at the
external region to an internal region having n = (5−3q)/2(1−q). As happens
in the Michie-King models, the value of the central potential is also arbitrar-
ily set to define implicitly the total mass and the external radius. Therefore,
only objects with a sufficiently deep gravitational potential have the ability to
show the very internal limiting polytropic structure. In all the other cases the
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internal region falls in the transition regime where the external polytropic is
gently changing towards the asymptotic internal limit. In certain sense, this
characteristic is responsible by the variety of density profiles found in these
models.

3 The Integrated Density Profiles

Having obtained the density as a function of the gravitational potential we can
proceed by solving the Poisson equation which provides our dynamical link to
obtain the density profile. Following King (King 1966; King 1965; King 1978;
King 1981; King 1962) we normalize the density to its central value ρ0 and
introduce a core radius defined as

rc =
9σ2

4πGρ0

, (13)

that will be used as a unit to measure the radial distance. In the normalized
radial coordinate, the Poisson equation becomes

1

r2

d

dr
r2dφ

dr
= 9% (14)

where the dimensionless density % = ρ(φ)/ρ(φ0) can directly be obtained from
the solution of Equation (10) for each choice of the parameter φ0, whose value
will fix the whole structure of each model.

The Poisson equation can numerically be solved by imposing the boundary
conditions φ = φ0 and dφ/dr = 0 at the origin r = 0. The solution pro-
ceed from the center and stop at the external surface where r = rt and
φ = % = 0. The external and the core radii define naturally a concentra-
tion index C = rt/rc indicating how important is the truncation effect due
to tidal field. Models with low values of C correspond to structures where
the tidal field had imposed a severe damage to the unperturbed structure. In
figure 2 we present a set of solutions for three values of q. In the upper panel
we show the q = 1 model, corresponding to the usual class of lowered Michie-
King models. In the other two panels we present the profiles for q = 0.9 and
q = 0.8, showing that models with the same extent of the standard lowered
models have different density profiles. Note that all curves have zero gradient
for sufficiently small values of r regardless of the value of q. Indeed, such a
behavior is more noticeable for smaller values of q. In figure 3 we present the
projected density profile for each model presented in figure 2. Assuming that
light traces mass these profiles should directly be compared with the surface
brightness profiles.
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Fig. 1. The density profiles as a function of the gravitational potential has two
regimes. In the external region the structure is approximately described by a n = 5/2
polytropic index for all models. In the central region of those objects having a deep
potential, the limiting structure depends explicitly on the nonextensive parameter,
and resembles a polytropic with n = (5− 3q)/2(1− q).

The total mass of the q-lowered models can be evaluated by integrating the
density profile as

M = 4πr3
cρo

C∫

0

%r2dr = 4πr3
cρoµ, (15)

where µ is a dimensionless mass indicator which can be obtained trough nu-
merical integration. From Tables 1 and 2 we can see that models with lower
concentration C representing severely damaged structures tend to show a mass
distribution close to an uniform spheres with µ = 1/3. On the contrary, in ob-
jects with higher concentration index the mass is heavily dependent on the
central core distribution. In the course of the numerical solution the integra-
tion begins by defining an arbitrary value for the central potential φ0 and
carrying out the integration to a null value at the external surface. However,
since we have estimated the total mass we may use its value for determin-
ing the gravitational potential at the external surface −GM/rt which can be
expressed in our units as

φt = Φ(rt)/σ
2 = −9µ/C (16)
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Fig. 2. Mass density profiles for three representative models. The upper panel cor-
respond to a q = 1 model which is exactly the standard Michie-King models. The
other two panels correspond to models with q = 0.9 and 0.8 respectively. We can
see that models having the same size in units of rc, but different values of q, show a
large variety of density profiles. In each panel it is also indicated the corresponding
−φ0 of each model.

and this value can be used as a correction to be added in order to find the
gravitational potential at the center. As a final step, the corrected potential
can be used to estimate the potential energy

U =
1

2

rt∫

0

4πΦρr2dr =
GM

rt

ν (17)

where

ν =
C

18µ2

C∫

0

φr2dr. (18)

In Tables 1 and 2 we show the major parameters obtained in this class of
lowered models. The first column present the uncorrected central potential,
φ0, used to start the integration of the model. The radius containing half the
mass, rh, is shown in column 2 in units of the core radius. For the King model,
q = 1, the half radius is relatively stable even considering the large variation
covered by the concentration index. We see that the tidal radius, rt, varies by
more than two orders of magnitudes while the half radius is kept almost fixed
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−φ0 rh/rc µ φt Log C ν C1 C2

q=1.0

-2 0.567 0.224 -0.631 0.505 1.399 1.609 1.486

-3 0.651 0.413 -0.790 0.672 1.565 1.641 1.527

-4 0.701 0.645 -0.840 0.840 1.803 1.688 1.587

-5 0.729 0.941 -0.791 1.030 2.178 1.760 1.678

-6 0.744 1.346 -0.673 1.255 2.733 1.880 1.821

-7 0.751 1.985 -0.529 1.528 3.489 2.141 2.036

-8 0.755 3.178 -0.419 1.834 4.166 2.512 2.241

-9 0.757 5.569 -0.381 2.119 4.176 2.883 2.217

-10 0.757 10.019 -0.403 2.350 3.702 2.772 2.064

q=0.9

-2 0.579 0.224 -0.662 0.484 1.360 1.600 1.475

-3 0.679 0.410 -0.875 0.625 1.472 1.620 1.501

-4 0.751 0.629 -1.012 0.748 1.612 1.643 1.533

-5 0.806 0.880 -1.083 0.864 1.786 1.670 1.570

-6 0.850 1.165 -1.096 0.981 2.006 1.701 1.615

-7 0.888 1.487 -1.063 1.100 2.283 1.738 1.670

-8 0.920 1.852 -0.993 1.225 2.638 1.783 1.738

-9 0.950 2.274 -0.897 1.358 3.095 1.837 1.825

-10 0.978 2.771 -0.785 1.502 3.685 1.908 1.938

-11 1.003 3.375 -0.667 1.658 4.448 2.005 2.093

-12 1.029 4.142 -0.552 1.830 5.408 2.148 2.309

-13 1.053 5.171 -0.451 2.014 4.678 2.378 2.599

-14 1.076 6.625 -0.373 2.204 7.542 2.774 2.909

at 70% of the core radius. For the other models this stability of the half radius
is not generally preserved. As an example, for a model with q = 0.9 a similar
variation of the concentration index would imply in a variation of a factor
of two on the half radius. Actually, models with lower q index show a more
important departure from the Maxwellian case since the variation of the half
radius is even larger. This large variation in the half radius is a consequence
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−φ0 rh/rc µ φt Log C ν C1 C2

q=0.8

-2 0.588 0.225 -0.688 0.468 1.329 1.594 1.467

-3 0.699 0.409 -0.942 0.592 1.407 1.607 1.484

-4 0.784 0.626 -1.144 0.692 1.494 1.620 1.503

-5 0.855 0.869 -1.300 0.779 1.589 1.633 1.522

-6 0.915 1.137 -1.418 0.858 1.695 1.647 1.542

-7 0.969 1.427 -1.503 0.932 1.811 1.660 1.562

-8 1.017 1.737 -1.560 1.001 1.939 1.673 1.583

-9 1.062 2.067 -1.595 1.067 2.078 1.686 1.604

-10 1.104 2.417 -1.609 1.131 2.231 1.698 1.626

-15 1.286 4.438 -1.490 1.428 3.247 1.760 1.742

-20 1.442 6.934 -1.193 1.719 4.949 1.820 1.881

-30 1.708 14.190 -0.471 2.434 15.604 2.023 2.562

-40 1.936 50.098 -0.139 3.510 31.581 17.164 3.918
Resume of the lowered model parameters. The upper panel, q = 1, shows the same
solution as founded with the King models. The other panel illustrate the effect of
changing the q non extensivity parameter on the structural parameter.

of a change in the shape of the density profile for these models as can be seen
from figures 1 and 2. In fact, these figures show that for a similar external
radius the gradient in the density profile is different for each value of q.

In the last two columns of Tables 1 and 2 we present two concentration indices
based only on the projected surface density distribution. They are based in the
radii containing respectively 1/4, 1/2 and 3/4 of the total mass in each model.
The concentration index C1 is defined to be equal to r1/2/r1/4 and therefore
measure the degree of concentration in the central mass distribution. On the
other hand the index C2 is estimated as r3/4/r1/2 and measure the spread
of the mass distribution of the outer region. These two indices are useful to
give a broad representation of the gamma of variations seen in the surface
density profiles for these models. For a single parameter family each profile is
represented as one single point in the C1,C2 plane. This feature is illustrated in
figure 4 for each model represented in Tables 1 and 2. For a given value of q the
models falls in a line representing the gross features of the individual profiles.
Along each line q line the position of the points are uniquely determined by the
parameter −φ0. On the other hand these same plots can be easily obtained
from luminosity observed profiles. Therefore we can use the points in this
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plane to give a gross diagnostic of the models more appropriated to each class
of objects. Observe that all models tend to converge to a single point for
low −φ0 models, independent of the q index. This is a consequence of the
density profile as a function of the potential as shown in figure 1. For low
values of −φ0 the profiles tend to approximate a polytropic with n = 5/2. As
a consequence, these models tend to present a unique surface density profile
and therefore also have a unique pair of concentration indices C1 ' 1.46 and
C2 ' 1.28. This regime coincides with the profiles of highly tidally affected
models where the tidal radius is closer to the core radius. Therefore, strongly
tidally truncated GC tend to be equally well represented by different q models.
However, when we begin to sample larger values of the central potential we
observe the differences among the q models. In this regime the individual
density profiles behaves quite differently as a function of the parameter q.

The King models, represented here by the subclass with q = 1, are known
to give a good representation of the globular clusters. An empirical fit to the
radial distribution of GC show that (Djorgvski & Meylan 1994)

ρ(r) = ρ0(1 +
r

rc

)−α (19)

with 3.5 < α < 4. Using this empirical description we indicate in Figure 4
the region corresponding to the GC profiles by the letter G. We can see that
models having α = 3.5 tend to fall quite close to the region described by the
King models. At this point one may ask if these q-lowered models may provide
at least a reasonable description for elliptical galaxies. Such a possibility will
be examined next section.

4 Profiles For Elliptical Galaxies

The density profile of elliptical galaxies have been widely investigated either
from the observational and theoretical point of view. A very successful ap-
proach consist in represent the luminosity profile of these objects by r1/4, usu-
ally termed de Vancoulers law (de Vancoulers 1948; de Vancoulers & Capaccioli 1979).
Although existing many indications that such empirical relation is not univer-
sal, there is a firm believe that it provides a good representation for several
elliptical galaxies.

A generalization of the de Vaucouleurs law is the so-called Sérsic law where
the luminosity profiles are represented by an expression,

Ir = Ie10−bn[( r
re

)1/n−1] (20)
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where n is the Sérsic index and bn is a properly defined constant so that
the effective radius re contains half of the total luminosity. In particular, for
n = 4 the de Vaucouleurs profile is recovered. Models with n ' 3 can be
represented by the lowered King models, but those with n ' 4 are definitely
better represented by a model with 0.9 < q < 1.
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Fig. 3. Projected density profiles for the 3 classes of models presented in Figure 2.
Models corresponding to lower values of −φ0, and hence C, have a higher similarity
due to the dominant effect of the external polytropic structure (n = 5/2).

A simple integration of the de Vaucouleurs law leads to profile corresponding
to a pair of concentrations indexes C1 = 2.730 and C2 = 2.506, which is
represented by the label r1/4 in figure 4. It is interesting to observe that this
point is closely represented by a model q ' 0.95 and −φ0 ' −10.45. In figure
5 we present the projected density profile corresponding to this model. As one
may see, this model is a good representation of the de Vaucouleurs law over an
interval of nearly 10 orders of magnitudes. There are two points that deserve
a further comment. The first one is that models with parameters q =' 0.95
and φ = −10.45 are the best representation of the de Vaucouleurs law. If
we explore the parameter region neighboring this point we can verify that the
agreement is progressively lost. In figure 4 we illustrate that point by exploring
points departing 1% from that optimum model.

The other point of interest is that our representation of the de Vaucouleurs law
does not exactly reproduce the r1/4 profile. There is a noticeable oscillation
around that trend. Over the 10 magnitude interval were the q profile is close to
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Fig. 4. This concentration diagram shows the gross characteristic of the mass dis-
tribution as a response in changing the q nonextensive parameter. The interrupted
line with the label G mark the approximated location of GC lying close to the King
model, corresponding to q = 1. The circular region with the label r1/4 law marks
the position of the elliptical galaxies obeying the de Vaucouleurs law. In this case,
a good description of the luminosity profile is provided by a model with q = 0.95.

the de Vaucouleurs law this oscillations have an amplitude of the order of 0.2
magnitudes. The remarkable fact is that the same phenomenon was observed
by Caon (Caon et al. 1997) in the elliptical galaxies belonging to the Virgo
cluster. This is clearly a point that deserve a closer scrutiny in the future.

5 Conclusion

In this paper we have proposed a new family of lowered models with basis
on the nonextensive kinetic theory. As we have seen, these q-lowered models
based on Tsallis statistics extend naturally the class of Michie-King family
and are also able to reproduce the observed structure of globular clusters.
Although giving a broader range of density profiles than the usual King-Michie
lowered models, the region occupied by these system in the concentration
index diagram remains close to the q = 1 models which correspond exactly
to the classical King models. It remains a matter of investigation to verify
if the actual observed profiles of galactic globular clusters do favor a q = 1
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Fig. 5. A comparison of the q = 0.95 model with the de Vaucouleurs law showing
that this model may give a good description of the r1/4 law over an interval of 10
magnitudes.

lowered Maxwellian distribution or if there exist room do discuss the presence
of departures from this solution.

For elliptical galaxies the situation is much more favorable to the nonextensive
models. It is known that the Michie-King models do not give a close represen-
tation of the observed profiles of elliptical galaxies. Some objects, like NGC
4472, possibly affected by tidal truncation are well represented by the King
profile (King 1978). However, the vast majority of bright elliptical, as NGC
3379, do no fit quite well in the King model and tend to be closer to the
de Vaucouleuers profile (de Vancoulers & Capaccioli 1979). In this concern,
the contribution of the lowered nonextensive models can be quite important
since it is possible to find models which are closely resembling the structure
of elliptical galaxies. In fact a model with q = 0.95 m is able to reproduce
the de Vaucouleurs empirical law over more than 10 magnitudes of surface
brightness. It could be a matter of great interest to pursue a more detailed
comparison of these models with the actual data on elliptical galaxies. In par-
ticular, these non extensive models predict a systematic departure from the
de Vaucouleurs law in the central region similar to the findings by Ferrarese
(Ferrarese et al. 1994). Using data from the Hubble space telescope these au-
tors have demonstrated that the very internal regions of ellipticals tend to
show an internal isothermal core quite different from the prediction of a pure

15



de Vaucouleurs law. Using bright ellipticals in the Virgo cluster they show that
the brightness profile become closer to the de Vaucouleurs law only after the
inner 10 arcsecond region. There is also a prediction of an external truncation
but this could be a more difficult task to detect since this truncation is heavily
dependent of the sky subtraction procedure.
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