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Introduction

The Einstein-Cartan theory is a straightfor-
ward and natural way to introduce torsion in
metric gravity.

S =
∫ √−gd4x

{
− 1

κ2
(R̃− 2Λ) + Lsource

}
,(1)

where κ2 = 16πG = 3.38× 10−37 GeV−2.

But Einstein gravity satisfies the known grav-
itational tests, so why to include torsion?

1) Torsion is a degree of freedom present in
low energy string theory.

2) It can be related to theories with Lorentz
symmetry violation.

3) Torsion effects are restricted to very high
energy densities, having negligible effects on
gravitational tests.
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Gravity with torsion:
Hehl, von der Heyde, Kerlick and Nester,
Rev. Mod. Phys. (1976).
See also Shapiro, Phys. Rept. (2002).

It is interesting to study the effects of tor-
sion in early cosmology. For a review, see
Puetzfield, New Astron. Rev. (2005).

There are some well known effects, such as
singularity avoidance and accelerated expan-
sion.

Some references:
Kopczynski (1973), Trautman (1973),
Hehl, von der Heyde and Kerlick (1974).
Also: Gasperini (1986), Obukhov and Ko-
rotky (1987), Shapiro (2002).
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Theory

We shall consider for the source terms the
axial current coupling, JµSµ, and also a spe-
cial spinning fluid (Weyssenhoff, 1947).

It is natural to assume Jµ =< ψ̄γ5γµψ >.

There are papers with the spinning fluid (Ray
and Smalley, Gasperini, Szydlowski and Kraw-
iec, etc.)

But no one includes both, spinning fluid and
axial current.

We take the metric gµν and torsion

Tµ
αβ := Γ̃µ

αβ − Γ̃µ
βα (2)

as independent quantities in the variational
proceedure.
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The dynamical equations in the metric ds2 =
dt2 − a(t)2(dx2 + dy2 + dz2) are

Gµν = κ4
{
−3gµνJ2 +

1

16
gµνσ2 − 1

8
uµuνσ2

}

+
κ2

2
{(ρ + p)uµuν − pgµν}+ Λgµν ,

where σ2 =< SµνSµν >, < Sµν >= 0 = Sµνuν

and Jµ = (J(t),0,0,0). Let p = ρ/3:

3ȧ2

a2
= κ4

{
−3J2 − σ2

16

}
+

κ2

2
ρ + Λ

−ȧ2

a2
− 2ä

a
= κ4

{
3J2 − σ2

16

}
+

κ2

6
ρ− Λ .

One has also

ä

a
= κ4

{
−J2 +

σ2

24

}
− κ2

6
ρ + Λ/3 .
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The energy-momentum conservation reads

ρ̇a + 4ȧρ = κ2
{

1

8a5

d

dt

(
a6σ2

)
+ 6a

d

dt
(J2)

}
.

Assuming the natural ansatz for the sources
scale dependence, σ2 = σ2

0a−6 and J2 =
J2
0a−6, we get the following first order non-

linear system:

ȧ2

a2
= −κ4

(
J2
0

a6
+

σ2
0

48a6

)
+

κ2

6
ρ +

Λ

3
,

dρ

da
= −4ρ

a
− 36κ2J2

0

a7
.

The last equation admits the radiation-like
solution ρ ∝ a−4 only if J2

0 = 0.
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Solutions

The system has two remarkable particular so-
lutions, given by ρ = ρ0 a−6:

(A) Case θ := κ4(2J2
0 − σ2

0/48) > 0:

a(t) =





√
3θ

Λ
sinh (

√
3Λ t)





1/3

; (3)

(B) Case θ < 0:

a(t)3 +

√
3θ

Λ
+ a(t)6 =

√
−3θ

Λ
exp(

√
3Λ t) . (4)

These solutions restrict the present value of
ρ(t0) = ρ0 to ρ0 = 18κ2J2

0 .

Measurement of ρ0 determines J2
0 .
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Some features of solutions (A) and (B)

Solution (A):

No singularity avoidance, accelerated expan-
sion only for a > ai, with ai determined by
the sign of ä.

Greater θ means greater ai.

Solution (B):

Accelerated expansion all the time, singular-
ity avoidance.

Condition ȧ2 > 0 implies a fine tunning be-
tween parameters σ2

0 and J2
0 : |θ| < 1.67 ×

10−84 GeV2.

Let |θ| = 1.67×10−84 GeV2. Then, the min-
imum amin will be given by (−3θ/Λ)1/6 ∼ 1!

Of course, amin should be extremely small, so
that |θ| must be less than, say, 10−300 GeV2.
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General solutions

In this case, ρ0 6= 18κ2J2
0 , such that condi-

tion ȧ2 > 0 is not a fine tunning condition,
but an upper bound one for both σ2

0 and J2
0 .

One can integrate numerically the system,
starting from an arbitrary point ρ0, say, ρ0 =
10−54 GeV4.
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