High Precision Chemical Abundances

Eu Dy

Gd

Zr

Pr

Ce

Yb

Sm

Ba

Ag Nd

Ru

Pd

Mo

Y

Sr

La

OrJorgeMelendez

@ DrJorgeMelendez

What is the limit in chemical abundance precision?

From Lithium to Uranium: Elemental Tracers of Early Cosmic Evo-lutionProceedings IAU Symposium No. 228, 2005V. Hill, P. François & F. Primas, eds.

 \odot 2005 International Astronomical Union doi:10.1017/S1743921305005934

Globular cluster and halo field abundances: similarities and a few differences

Christopher Sneden¹

¹Department of Astronomy, University of Texas, Austin, TX 78712, USA email: chris@verdi.as.utexas.edu

Sneden suggests a precision ≥0.06 dex and accuracy worse than 0.1 dex: "accuracy better than 0.1 dex in abundance ratios is difficult to achieve at the moment"

What is the limit in abundance precision?

Caffau et al. vs. Asplund oxygen abundance

CN is ubiquitous in the solar spectrum

CN blends for O I triplet

CN blends must be taken into account, otherwise the EW may be inaccurate

Comparison of equivalent widths for O I triplet

Line (A)	Asplund E.W. (A)	Caffau E.W. (A)	Melendez E.W. (A)
7771	71.2	81.4	74.3 ± 2.6
7774	61.8	68.6	63.9 ± 0.5
7776	48.8	54.2	50.4 ± 0.5

Asplund et al. E.W. may be

underestimated by 3,5%

Caffau et al. EW may be overestimated by 8,2%

Depending on how we measure the EW, we can have discrepancies of ~0.05 dex, even for relatively clean lines like the OI triplet at 777nm

Comparing abundances for α Cen A, α Cen B

Hinkel & Kane 2013

Can we break the 0.05 dex barrier in elemental abundances?

- Very high S/N: *reduces errors in* W_{λ}
- High spectral resolution: reduces errors in W_{λ}
- Careful selection of lines: *reduces blends*
- Strictly differential approach: *reduces* model errors

Can we break the 0.05 dex barrier in elemental abundances?

- Very high S/N
- High spectral resolution
- Careful selection of lines
- Strictly differential approach using stars similar between them ("stellar twins"):
 - precise relative efective temperartures
 - line-by-line cancel errors in gf-values
 - weak dependence on model atmospheres

Some tips

- Try to do consistent observations using the same instrument/configuration
- Verify your relative continuum normalization

Measuring lines

- Whenever possible choose the cleanest lines
- If the lines are not perfectly clean, try to choose a line close to a continuum region

Bedell et al. 2014, ApJ, 795, 23

Measuring lines

Measure one line at a time in ALL STARS.

Overplot the spectra and make a decision about continuum and part of the line profile that will be used

Bedell et al. 2014, ApJ, 795, 23

5522 Sual approach is to measure ALL LINES in one star

Continuum region too small (±1Å) Better to use (±2,5Å)

Experiment using solar twins

- Magellan 6.5m Telescope
- & Mike spectrometer
- R = 65,000
- S/N = 450 per pixel
- coverage 340 1000 nm
- Solar spectrum: Vesta
- 3 nights of observations

Observations of the solar twin 18 Sco

RED frame

BLUE frame

10.0 Example of HIP89650 9.5 9.0 HIP79672 Magellan 8.5 HIP77883 spectra of 8.0 7.5HIP75923 11 solar twins 7.0HIP64713 and the Sun 6.5 Flux HIP55409 6.0 (total spectral 5.5 HIP44997 coverage 5.0 Relativ HIP44935 4.5 3350 A -1µm) 4.0 HIP41317 3.5HIP36512 3.0 HIP30502 2.5 2.0 Small part Sun 2007 April 2 1.5(597-603nm) Sun 2007 April 1 1.0 0.5 of solar twin & 0.0 5970 5975 6015 6020 6025 6030 5985 5990 5995 6000 6005 6010 5980 Sun's spectra λ(Å) Meléndez et al. 2009, ApJ, 704, L66

[Cr/Fe] distribution in 11 solar twins $<[Cr/Fe]> = -0.011 \text{ dex} (\sigma = 0.009 \text{ dex})$ observational error (s.e.) = 0.012 dex7 atmospheric parameters = 0.002 dexmeasurements total error = 0.012 dex Star-to-star 6 scatter of 5 only 4 0.009 dex of 3 Number 2 1 HO 0.00 -0.12 -0.08 -0.040.04 0.08 0.12 -0.200.16 0.20 -0.16

[Cr/Fe]

Sun's anomalies are strongly correlated to the dust condensation temperature of ^E/_S the elements! **Correlation** is highly significant probability ~10⁻⁹ to happen by chance

It's most likely to win the lottery

Meléndez, Asplund, Gustafsson, Yong 2009, ApJ Letters

The late accreted gas in the convection zone was deficient in refractories

Bedell, Meléndez, Bean, Ramírez, Leite & Asplund 2014

Test: different Sun's spectra: no variations 0.04 (< 0.003 dex) 0.02 Na -∳�------dex 0.00 -0.02-0.0500 1000 1500 Tcond A&A 535, A14 (2011) Is the solar spectrum latitude-dependent?

D. Kiselman^{1,2}, T. M. D. Pereira^{3,*}, B. Gustafsson^{4,5}, M. Asplund^{6,3}, J. Meléndez⁷, and K. Langhans^{1,2,**}

Planet effects in binary system with "twins"

THE ASTROPHYSICAL JOURNAL, 740:76 (15pp), 2011 October 20 © 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A. doi:10.1088/0004-637X/740/2/76

ELEMENTAL ABUNDANCE DIFFERENCES IN THE 16 CYGNI BINARY SYSTEM: A SIGNATURE OF GAS GIANT PLANET FORMATION?

I. Ramírez¹, J. Meléndez², D. Cornejo³, I. U. Roederer¹, and J. R. Fish^{1,4}

16 Cyg: widely separated pair of solar analogs

16 Cyg A : no planets

16 Cyg B : giant planet (~ 2 M_J)

Signatures of giant planet formation: 16 Cyg binary

Ramírez et al. 2015. See also Teske et al. 2015; Biazzo et al. 2015

Consistent independent results for binary XO-2 have been obtained by Biazzo et al. (2015)

See also Teske et al. 2015

Binary pair ζRet with debris disk in one component (ζ^2) 0.15 Ball 0.10 Ret $-\zeta^2$ Ret) Chemical 0.05 [X/Fe] (dex) signature 0.00 found by Not Safe et al. 2016 ell 0.05 SI -0.10-0.15500 1000 1500 0 T_{c} (K)

Binary pair ζRet with debris disk in one component (ζ^2)

Trend with T_{cond} confirmed by Adibekyan et al. 2016
The Curious Case of Elemental Abundance Differences in the Dual Hot Jupiter Hosts WASP-94AB^{*}

Johanna K. Teske^{1,+}, Sandhya Khanal², Ivan Ramírez²

Negative results: HAT P-1 binary

Also negative results for HD80606 + HD80607 (Mack et al. 2016; Safe et al. 2015)

Planet Search at La Silla: 88 nights

International project lead by USP (Prof. Jorge Melendez). Brazil, USA, Germany, Australia

HARPS at the 3,6m telescope has a precision of 1m/s

The Solar Twin Planet Search

I. Fundamental parameters of the stellar sample*

Ramírez et al. 2014 MIKE spectra $R = 65\ 000$ S/N = 400

A&A 581, A34 (2015) DOI: 10.1051/0004-6361/201525748 © ESO 2015

The Solar Twin Planet Search

II. A Jupiter twin around a solar twin*

M. Bedell^{1,**}, J. Meléndez², J. L. Bean¹, I. Ramírez³, M. Asplund⁴, A. Alves-Brito⁵, L. Casagrande⁴, S. Dreizler⁶, T. Monroe², L. Spina², and M. Tucci Maia²

- ¹ Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave, Chicago, IL 60637, USA e-mail: mbedell@oddjob.uchicago.edu
- ² Departamento de Astronomia do IAG/USP, Universidade de São Paulo, Rua do Matão 1226, Cidade Universitária, 05508-900 São Paulo, SP, Brazil
- ³ McDonald Observatory and Department of Astronomy, University of Texas at Austin, USA
- ⁴ Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611, Australia
- ⁵ Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Porto Alegre, RS, Brazil
- ⁶ Institut für Astrophysik, University of Göttingen, Germany

Received 26 January 2015 / Accepted 27 June 2015

Solar system

Jupiter

Jupiter twin in HIP 11915

HIP 11915b

First Brazilian planet

Jupiter is fundamental to keep the Solar System architecture

Inner rocky planets

.

Outer giant planets

HIP 11915: solar system twin candidate?

HIP 11915: solar system twin candidate? Life in hypothetical planet?

Age only 10% smaller than the Sun: perhaps enough to develop intelligent life

Trends between abundances and stellar ages (important for stellar evolution & galactic chemical evolution)

HIP 56948 σ (LTE) = 0.0096 dex σ (NLTE) = 0.0093 dex

Differential method is also useful to obtain high precision stellar parameters $(\Delta \text{ Teff} \le 10 \text{ K})$ $\Delta \log g \leq 0.02 dex$ \rightarrow good stellar masses and ages

The solar lithium problem

- The solar Li is about 160 times lower than in meteorites.
- Li burns at 2.5 10⁶ K;
 below the convection zone: no depletion in the photosphere!

High quality spectra needed to study Li!

VLT + UVES R = 110 000, S/N ~ 500 - 1000 at the Li feature

UVES spectrograph

HIP 114328 and HIP102152: old Li-poor solar twins

A&A 567, L3 (2014)

© ESO 2014

HIP 114328: a new refractory-poor and Li-poor solar twin*,**

Jorge Meléndez¹, Lucas Schirbel¹, TalaWanda R. Monroe¹, David Yong², Iván Ramírez³, and Martin Asplund²

3.3 Most stars Charbonnel & Talon (2005) ----- do Nascimento et al. (2009) 3.0 follow a Xiong & Deng (2009) --- Denissenkov (2010) 2.7 ---- Andrassy & Spruit (2015) lithium – age 2.4 correlation, including stars HD 96423 with planets HD 38277 ;<u>-</u>1.5 ⊢∰16 Cyg A 1.2 16 Cyg B (planet 0.9 host) is normal in Li. Perhaps 0.6 16 Cyg A 0.3 accreted a 0.0 3 8 2 5 6 0 planet (also rich Age (Gyr) in refractories) Carlos, Nissen & Melendez (2016)

9

Galactic Chemical Evolution

High precision abundances in 18 Sco: a solar twin rich in refractories and neutroncapture elements

August 10, 2014

Figure 10. Filled circles represent the [X/H] ratios in 18 Sco after they have been subtracted from the condensation temperature trend (Figure 8) and from the AGB contribution (Figure 9). The residual enhancement, $[X/H]_r$ (filled circles), is in extraordinary agreement with the predicted *r*-process enhancement based on the solar system *r*-process fractions by Simmerer et al. (2004) and Bisterzo et al. (2011, 2013), represented by dashed and solid lines, respectively.

Abundance ratios as a function of age High-precision abundances of Sc, Mn, Cu, and Ba in solar twins

Trends of element ratios with stellar age *

Spina et al. (2016): chemical clocks

Tucci-Maia et al. 2016

[Y/Mg] can also tell us about mass transfer in binaries

HIP 10725: The first solar twin/analogue field blue straggler***

Lucas Schirbel¹, Jorge Meléndez¹, Amanda I. Karakas², Iván Ramírez³, Matthieu Castro⁴, Marcos A. Faria⁵, Maria Lugaro⁶, Martin Asplund², Marcelo Tucci Maia¹, David Yong², Louise Howes², and José D. do Nascimento Jr.^{4,7}

Signatures of former AGB star

Conclusion

Precision Spectroscopy (0.01 dex) of solar twins (and stellar twins) is a powerful tool for studies related to planets, stellar evolution and galactic chemical evolution

