PRECISION SPECTROSCOPY 2016 Stellar Evolution and Nucleosynthesis

Stellar Evolution of low and intermediate mass stars

Alejandra Romero Universidade Federal do Rio Grande do Sul

Porto Alegre, Setember 19

Stellar evolution

Stellar evolution

The Hertzprung-Russell diagram

Teff-L/Color-Magnitude diagram

"Single mass" Evolution

3.5 0 47 Tucanae E(B-V) = 0.042.5 2 $(m-M)_{v} = 13.35$ $\log(L/L_{sun})$ М 1.5 [Fe/H] = -0.83 $[\alpha/Fe] = 0.3$ Ages: 8,10,12,14,18 Gyr 6 0.5 0 Z=0.004 8 -0.5 -4.4 4.3 3.9 3.8 3.7 3.6 3.5 4.2 3.4 4.1 1.5 .5 $\log(T_{eff})$ [K] $(B-V)_0$ H-R diagram Z=0.004 / 1 M M45, The Pleiades open cluster 47 Tuc

2007-01-13 (C) D. Nash

"Single age" different masses

Teff-L/Color-Magnitude diagram

"Single mass" Evolution

3.5 3 2.5 log(L/I 1.5 0.5 Z=0.004 -0.5∟ 4.4 4.3 3.9 3.5 4.2 3.8 3.7 3.6 3.4 $\log(T_{eff}) [K]$

H-R diagram Z=0.004 / 0.9-3 M

"Single age" different masses

47 Tuc

Teff-L/Color-Magnitude diagram

"Single mass" Evolution

"Single age" different masses

H-R diagram Z=0.004 / 0.9-3 M

Spherical symmetry

Mechanical structure

dM $4\pi r^2 \rho$ dr

en cluster

Mechanical structure

dM $4\pi r^2 \rho$ dr

 $GM\rho$ dPdr r^2

$\frac{dL}{dr} = 4\pi r^2 \rho \left(\epsilon - T \frac{dS}{dt} \right) \qquad \begin{array}{c} \text{Conservation of} \\ \text{energy} \end{array}$	
	soundary conditions
$dT = 3 \kappa \rho L_r$	M(r=0)=0
$dr = 4ac T^3 4\pi r^2$	L(r = 0) = 0
transport	D(m, D) = 0
$\frac{dT}{dt} = -\frac{\Gamma_2 - 1}{2} \frac{T}{T} \frac{dP}{dt}$	P(r=R)=0
$dr \qquad \Gamma_2 P \ dr$	T(r=R)=0 , pen cluster
	(C) D. Nash

Mechanical structure

dM= $4\pi r^2
ho$ dr

dP $GM\rho$ dr r^2

Equation of state

$$\frac{dL}{dr} = 4\pi r^2 \rho \left(\epsilon - T\frac{dS}{dt}\right)$$

Conservation of energy

$$P = \frac{\rho}{m}kT + \frac{1}{3}aT^4$$

$$P = K\rho^n$$

Energy transport

> M45, The Pleiades open cluster 2007-01-13 (C) D. Nash

dT $\kappa \rho L_r$ 3 $4ac \overline{T^3} \overline{4\pi r^2}$ drdT $\Gamma_2 - 1 T dP$ drdr

 Γ_2

 $\frac{\text{Mechanical}}{\text{structure}} \quad \frac{dM}{dr} = 4\pi r^2 \rho$

 $\frac{dP}{dr}$ $GM\rho$ r^2

Equation of state $\frac{dL}{dr} = 4\pi r^2 \rho \left(\epsilon - T \frac{dS}{dt} \right)$ Conservation of energy $P = \frac{\rho}{m}kT + \frac{1}{3}aT^4$ dT $3 \kappa \rho L_r$ $P = K\rho^n$ $4ac T^3 \overline{4\pi r^2}$ dr**Chemical evolution** Energy transport dT $\Gamma_2 - 1 T dP$ $\frac{\partial n_i}{\partial t} = \left(\frac{\partial n_i}{\partial t}\right)_{nuc} + \left(\frac{\partial n_i}{\partial t}\right)_{mix}$ \overline{dr} i=1,....,IP dr Γ_2

Main Sequence

Marques, J.P. et al. Astrophys.Space Sci. 316 (2008)

• Energy source: Hydrogen burning

• Longest stage in the life of stars

Sequence in stellar mass

Main Sequence

$$\tau_{SP} \propto \frac{X_H M c^2}{L} \sim 10^{10} \left(\frac{M}{M_{\odot}}\right)^{-2}$$
anos

10¹⁰ yr for a 1 M_{sun}
6 x 10⁶ yr for a 20 M_{sun}
Mass -Luminosity relation for Main
Sequence stars

 $L\simeq M^3\mu^4$

Main Sequence: Inner structure

- M >1.3Msun: High Main Sequence
 - convective core + raditive envelope
- M < 1.3 Msun: Low Main Sequence raditive core + convective envelope

Low Main Sequence

Proton-proton cycle

 $4H \longrightarrow He^4 + 2e^+ + 2v_e + \gamma$

Radiative core +

Convective envelope

$$V_{pp}$$
: $T^{5-3.5}$ T: $5-20 \times 10^6$ K

$$-\left(1-\frac{1}{\gamma}\right)\frac{T}{P}\frac{dP}{dr} > -\frac{dT}{dr}$$

High Main Sequence

Convective core + radiative envelope

 T^{8-20} T: 10-50×10⁶ K V_{CNO}

 $\frac{dT}{dr}$ $\left(1-rac{1}{\gamma}
ight)rac{T}{P}rac{dP}{dr}>$

2007-01-13 (C) D. Nash

Post-Main Sequence: Red Giant Branch

Energy source: H-burning in a shell Contraction of the core

M45, The Pleiades open cluster 2007-01-13 ¹⁸ (C) D. Nash

Post-Main Sequence: Red Giant Branch

Post-Main Sequence: Red Giant Branch

Beginning of the He-burning stage

He core mass for He-flash depends on initial metallicity

(C) D. Nash

cluster

Central He burning

Energy source:

3 α cycle $3^{4}He \rightarrow {}^{12}C + \gamma$ $v_{3\alpha} \sim T^{20-40}$

H-shell: CNO cycle

Central He burning

• $3 \ ^{4}\text{He} \rightarrow \ ^{12}\text{C} + \gamma$ $^{12}\text{C} + \ ^{4}\text{He} \rightarrow \ ^{16}\text{O} + \gamma$

4.5

og(L,/Lsun

0.5

Central He burning stage lasts ~ 10 % of the MS

> M45, The Pleiades open cluster 2007-01-13 ²⁴ (C) D. Nash

Central He burning

o**pen cluster** 25

Asymptotic giant branch

Double shell burning:
He to C: 3α
H to He CNO cycle

M45, The Pleiades open cluster 2007-01-13 ²⁶ (C) D. Nash

Thermal Pulsing AGB

 Two stable burning shells
 He shell gets too thin and triggers unstable He burning: L_{He} grows

3. Energy expands the shells above the He-burning shell
4. The H-burning shell gets cooler and H burning turns down

5. The star contracts again and the H burning starts: L_H grows
6. Two stable burning shells

Thermal Pulsing AGB

 $M_{core} \sim 0.5 \ M_{sun} \ \tau \sim 10^5 \ yr$

 $M_{core} \sim 1.4 M_{cur} \tau \sim 10 yr$

core

cooler and H burning turns down 5. The star contracts again and

L_{He} grows

the H burning starts: L_{H} grows 6. Two stable burning shells

1. Two stable burning shells

2.He shell gets too thin and

3. Energy expands the shells

4. The H-burning shell gets

triggers unstable He burning:

above the He-burning shell

Thermal pulsing AGB: third dredge-up Dredge-up: Convection brings processed material to the envelope of the star

First Dredge-up: RGB (post H central burning)

Second Dredge-up: E-AGB (post He central burning)

Third dredge-up: Thermal pulses

Thermal pulsing AGB: third dredge-up Dredge-up: Convection brings processed material to the envelope of the star

First Dredge-up: RGB (post H central burning)

Second Dredge-up: E-AGB (post He central burning)

Third dredge-up: Thermal pulses

Thermal pulsing AGB: third dredge-up Dredge-up: Convection brings processed material to the envelope of the star

First Dredge-up: RGB (post H central burning)

Second Dredge-up: E-AGB (post He central burning)

Third dredge-up: Thermal pulses

> M45, The Pleiades open cluster 2007-01-13 ³¹ (C) D. Nash

Thermal pulsing AGB: third dredge-up

A convection zone appears and dredges up processes material to the envelope -- C and O rich stars – reduces the mass of the core

Thermal pulsing AGB: third dredge-up

Dredge up parameter λ increases with Num. Of Tps Evolution codes: overshooting parameter f (0.016 for solar envelope)

Thermal pulsing AGB: third dredge-up

Third dredge up efficiency increases with metallicity

$$\lambda = \frac{\Delta M_H}{M_{dredge}}$$

Mass loss during giant phases RGB: Schröeder & Cuntz (2005) η=0.5 AGB: Vassiliadis & wood (1993, modified), Groenewegen et al. (2009)

 $1M_{sun}: M_{RGB} \sim M_{AGB}$ (22 %) for Z=0.004

 $2M_{sun}: M_{AGB} >> M_{RGB}$

M45, The Pleiades open cluster 2007-01-13 ³⁵ (C) D. Nash

Post-AGB evolution

 $M_{env} \sim 10^{-3} M_*$ end of TP-AGB stage

Superwind stage followed by the formation of a planetary nebula.

Post-AGB evolution

 $M_{env} \sim 10^{-3} M_*$ end of TP-AGB stage

Superwind stage followed by the formation of a planetary nebula.

astrojan ini hi

Sirius A, a sun like our Yellow Sun,

Sirius B, a Carbon Star the size of Earth. Sirius in Visible Light

Sirius in X-ray

Sirius A, a sun like our Yellow Sun,

Sirius B, a Carbon Star the size of Earth. Sirius in Visible Light

Sirius in X-ray

Spectral type O-B-A M~0.6 M_{sun} , R~10.000 km, p~10⁶ g/cm³ (one tee spoon weights 1000 kg)

Mass-radius relation : M~R⁻³

<u>Cosmocronology</u>: Pre-WD age depends on initial Mass and metallicity

ter

Cosmochronology: Pre-WD age depends on initial Mass and metallicity

Romero et al. (2015)

Pleiades open cluster

Cosmocronology: Pre-WD age depends on initial Mass and metallicity

Campos et al. (2016)

Cosmocronology: Pre-WD age depends on initial Mass and metallicity

Campos et al. (2016)

Thank you!

