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Neutron Stars
equation of state

most recent analysis A. Steiner et al. 2012

pressure vs density mass-radius constraints3
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FIG. 1: A comparison of the predicted M–R relation with the
observations. The shaded regions outline the 68% and 95%
confidences for the M–R relation; these include variations in
the EOS model and the modifications to the data set (see
Table I) but not the more speculative scenarios. The lines
give the 95% confidence regions for the eight neutron stars in
our data set.

densities achievable in neutron star interiors. In addition,
the posterior distributions of the central energy density
of the maximum mass star imply that the highest central
density is ∼ 1200 MeV/fm3 [29].

Producing significantly different neutron star radii re-
quires extreme assumptions regarding the EOS and the
data. We now consider more speculative scenarios, which
are presented in the bottom portion of Table I (see also
Figure 3). To achieve significantly smaller radii, we must
assume both that the color correction factor is anoma-
lously small (≤ 1.3) for all of the PRE sources and that
the EOS has strong phase transitions (model C). In this
case, we get radii as small as 9 km. Increasing the max-
imum mass constraint, as would be the case if the es-
timated most-likely mass of the pulsar B1957+20 is 2.4
M! [32], slightly increases radii (modification VII). We
obtain even larger radii if we add the long PRE burst
source 4U 1724–307 [10] and further assume, as suggested
in Suleimanov et al. [10] (modification VIII), that the
short PRE bursts and the qLMXBs M13 and ω Cen not
be considered because of modifications to their spectra
due to accretion. This scenario cannot yet explain, how-
ever, why short PRE burst cooling tails are observed to
have constant normalizations.

While we are able to significantly constrain the P–ε re-
lation, determination of the composition of neutron star
cores is not yet possible. To this end, we consider EOS
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FIG. 2: The predicted pressure as a function of baryon den-
sity of neutron-star matter as obtained from astrophysical
observations. The region labeled “NS 68%” gives the 68%
confidence limits and the region labeled “NS 95 %” gives the
95% confidence limits. Results for neutron-star matter from
effective field theory [18] (see inset), from quantum Monte
Carlo [30], and from constraints inferred from heavy-ion col-
lisions [31] are also shown for comparison.

model E, which describes the entire star by the high-
density quark matter EOS used in model D, i.e a self-
bound strange quark star. In the mass range 1.4–2 solar
masses, the radii are not significantly different from our
baseline model so that there is no strong preference for
either strange quark or hadronic stars; however, model E
predicts radii significantly less than 10 km for low masses
(≤ 1.2 M!).

Our neglect of rotation is unlikely to affect our conclu-
sions. Rotation increases the radius at the equator and
decreases the radius at the poles, and this could be rele-
vant for the interpretation of some PRE X-ray bursts: the
rotation rate of 4U 1608–522 is 619 Hz, more than half
of the rate for which the equatorial radius is increased by
about 50%. However, this is likely to produce a system-
atic uncertainty smaller than that due to variations in
fC , which we have already taken into account. The rota-
tion rates for the qLMXBs in our sample are unknown.
Assuming they are similar to other qLMXBs, however,
means that the effect of rotation is smaller than that of
their distance uncertainties.

The relationship between pressure and energy density
(Figure 2) that we determine from our baseline analysis
from observations is consistent with effective field the-
ory [18] and quantum Monte Carlo [8, 30] calculations
of low-density neutron matter. Note that these neutron

4

6 8 10 12 14 16

0.5

1

1.5

2

2.5

R (km)

)
M

 (M

Str
an

ge
 Q

ua
rk 

Sta
rs

M
 >

 2
.4

 M

Ba
se

lin
e 

M
od

el
C

M
od

. I
: L

ar
ge

 f

Ruled Out Models

FIG. 3: Predicted M–R relations for different EOS models
and data interpretations. Proceeding from back to front,
the red contours and probability distributions are for strange
quark stars (EOS model E with no modifications to the data).
Next are green contours which correspond to the baseline
model (EOS model A with no modifications to the data set),
and the magenta results are those assuming a larger maximum
mass to accomodate a mass of 2.4 solar masses for B1957+20.
Finally, the black lines are the 10 Skyrme models from Stone
et al. which are inconsistent with the data because their radii
are too large (they do not match the observations at masses
low enough to accomodate the low-mass objects like M13).

matter results are incompatible with Suleimanov’s inter-
pretation of 4U 1724-307 [10] and suggested exclusion
of short PRE bursts and qLMXLBs M13 and ω Cen.
Our results are also consistent with the high-density con-
straints from heavy-ion collisions [31].

Our results imply that over one third of the modern
Skyrme models studied in Stone et al. [33] are inconsis-
tent with observations. Covariant field-theoretical mod-
els that have symmetry energies which increase nearly
linearly with density, such as the model NL3 [34], are
also inconsistent with our results, although they may still
adequately describe isospin-symmetric matter in nuclei.

Our models do not place effective constraints on the
symmetry parameter Sv, but do place significant con-
straints on the symmetry energy parameter L; these are
summarized in Figure 4. The probability distribution for
each model is renormalized to fix the maximum probabil-
ity at unity and are then shifted upwards by an arbitrary
amount. The range which encloses all of the models and
modifications to the data is 43.3 to 66.5 MeV to 68%
confidence and 41.1 to 83.4 MeV to 95% confidence. The
allowed values of L are substantially larger for Model
C, which allows strong phase transitions at high densi-
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FIG. 4: The limits on the density derivative of the symmetry
energy, L. The single-hatched (red) regions show the 95%
confidence limits and the double-hatched (green) regions show
the 68% confidence limits.

ties, because the parametrization decouples the low- and
high-density behaviors.

Our preferred range for L is similar to that obtained
from other astrophysical studies [8, 20, 35] and exper-
imental studies, e.g., Refs. [24, 35]. Our results sug-
gest that the neutron skin thickness of 208Pb [36, 37]
is less than about 0.20 fm. This is compatible with ex-
periment [38] and also with measurements of the dipole
polarizability of 208Pb [39].

While we have endeavored to take into account some
systematic uncertainties in our analysis, we cannot rule
out corrections due to the small number of sources and
to possible drastic modifications of the current under-
standing of low-mass X-ray binaries. Nevertheless, it is
encouraging that these astrophysical considerations agree
not only with nuclear physics experiments but also with
theoretical studies of neutron matter at low densities and
heavy-ion experiments at higher densities.

We thank G. Bertsch, J. Linnemann and S. Reddy for
useful discussions. This work is supported by Chan-
dra grant TM1-12003X (A.W.S.), by the Joint Insti-
tute for Nuclear Astrophysics at MSU under NSF PHY
grant 08-22648 (A.W.S. and E.F.B.), by NASA ATFP
grant NNX08AG76G (A.W.S. and E.F.B.), and by DOE
grants DE-FG02-00ER41132 (A.W.S.) and DE-AC02-
87ER40317 (J.M.L.). J.M.L. and E.F.B thank the Insti-
tute for Nuclear Theory at the University of Washington
for partial support during this work. E.F.B. is a mem-
ber of an International Team in Space Science on type I
X-ray bursts sponsored by the International Space Sci-

PSR J1614-2230 M∗ = 1.97± 0.04 M� more info from binary NS mergers
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symmetry energy

nuclear EoS symmetry energy
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Neutron Stars
symmetry energy

tight correlation between ’neutron skin’ of 208Pb
and the slope L of the nuclear symmetry energy

at nucler saturation
J. Piekarewicz 2012

the high-density EOS of cold nuclear matter must come from the observation of massive neutron
stars.

In contrast, laboratory experiments may play a critical role in constraining the size of neutron
stars. This is because neutron-star radii are controlled by the density dependence of the
symmetry energy in the immediate vicinity of nuclear-matter saturation density [32]. Recall
that the symmetry energy represents the energy cost in converting protons into neutrons (or
viceversa) and may be viewed as the difference in the energy between pure neutron matter and
symmetric nuclear matter. A particularly critical property of the symmetry energy is its slope at
saturation density—a quantity customarily denoted by L [33]. Unlike symmetric nuclear matter,
the slope of the symmetry does not vanish at saturation density. Indeed, L is simple related to
the pressure of pure neutron matter at saturation density. That is,

P0 =
1

3
ρ0L . (4)

Although the slope of the symmetry energy is not directly observable, it is strongly correlated
to the thickness of the neutron skin of heavy nuclei [34, 35]. Heavy nuclei develop a neutron
skin as a consequence of a large neutron excess and a Coulomb barrier that hinders the proton
density at the surface of the nucleus. The thickness of the neutron skin depends sensitively on
the pressure of neutron-rich matter: the greater the pressure the thicker the neutron skin. And
it is exactly this same pressure that supports neutron stars against gravitational collapse. Thus
models with thicker neutron skins often produce neutron stars with larger radii [27, 36]. Thus,
it is possible to study “data-to-data” relations between the neutron-rich skin of a heavy nucleus
and the radius of a neutron star. We illustrate these ideas in Fig. 5 where the neutron-skin

does not. Then, we have to conclude that a 3% accuracy in
APV sets modest constraints on L, implying that some of
the expectations that this measurement will constrain L
precisely may have to be revised to some extent. To narrow
down L, though demanding more experimental effort, a
!1% measurement of APV should be sought ultimately in
PREX. Our approach can support it to yield a new accuracy
near !!rnp ! 0:02 fm and !L! 10 MeV, well below any
previous constraint. Moreover, PREX is unique in that the
central value of !rnp and L follows from a probe largely
free of strong force uncertainties.

In summary, PREX ought to be instrumental to pave the
way for electroweak studies of neutron densities in heavy
nuclei [9,10,26]. To accurately extract the neutron radius
and skin of 208Pb from the experiment requires a precise
connection between the parity-violating asymmetry APV

and these properties. We investigated parity-violating elec-
tron scattering in nuclear models constrained by available
laboratory data to support this extraction without specific
assumptions on the shape of the nucleon densities. We
demonstrated a linear correlation, universal in the mean
field framework, between APV and!rnp that has very small
scatter. Because of its high quality, it will not spoil the
experimental accuracy even in improved measurements of
APV. With a 1% measurement of APV it can allow one to
constrain the slope L of the symmetry energy to near a
novel 10 MeV level. A mostly model-independent deter-
mination of !rnp of 208Pb and L should have enduring
impact on a variety of fields, including atomic parity
nonconservation and low-energy tests of the standard
model [8,9,32].

We thank G. Colò, A. Polls, P. Schuck, and E. Vives
for valuable discussions, H. Liang for the densities of
the RHF-PK and PC-PK models, and K. Kumar for infor-
mation on PREX kinematics. Work supported by the
Consolider Ingenio Programme CPAN CSD2007 00042

and Grants No. FIS2008-01661 from MEC and FEDER,
No. 2009SGR-1289 from Generalitat de Catalunya, and
No. N N202 231137 from Polish MNiSW.
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FIG. 3 (color online). Neutron skin of 208Pb against slope
of the symmetry energy. The linear fit is !rnp ¼ 0:101þ
0:001 47L. A sample test constraint from a 3% accuracy in
APV is drawn.
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Figure 5. (Color online) The left-hand panel displays the correlation between the neutron-skin
of 208Pb and the slope of the symmetry energy for a variety of nonrelativistic and relativistic
models [37]. The right-hand panel shows the correlation between the neutron-skin of 208Pb and
the radius of a 1.4 M⊙ neutron star for two relativistic mean-field models.

thickness of 208Pb (∆rnp) is plotted on the left-hand panel against the slope of the symmetry
energy (L) for a variety of nonrelativistic and relativistic models [37]. The correlation between
these two quantities is extremely strong (0.979) and indicates that the neutron skin of 208Pb
may be used as a proxy for the determination of a fundamental property of the EOS. Also shown
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nuclear polarizability

correlation between ’neutron skin’ of 208Pb
and the dipole polarizability

αD =
8π
9

e2
∫

dω
SD(ω)
ω

→ αD = 20.1± 0.6 A. Tamii et al. 2011 4

FIG. 5: (Color online) Extraction of the neutron skin in 208Pb
based on the correlation between rskin and the dipole polar-
izability αD established in Ref. [8].

up to 130 MeV [32, 33], a result with further reduced
uncertainty αD = 20.1(6) fm3/e2 is obtained. The co-
variance ellipsoid of the correlation between αD and the
neutron skin thickness rskin in the approach of Ref. [8] is
shown in Fig. 5. Only with the present precision for αD

(hatched band) one can constrain the neutron skin thick-
ness to rskin = 0.156+0.025

−0.021 fm. The hitherto most precise
determinations of this quantity for 208Pb [36, 37] deduced
from exotic atoms (rskin = 0.18 ± 0.02 fm) and hadron
scattering (rskin = 0.211+0.054

−0.063 fm), respectively, are in
excellent agreement with our result based on a totally in-
dependent method. Recent calculations of neutron mat-
ter and neutron star properties [39] in the framework of
chiral effective field theory suggest rskin = 0.17±0.03 fm.
The predictions are sensitive to three-nucleon forces,
which may be further constrained by the present results.
Since the correlation between polarizability, neutron skin
thickness and symmetry energy is model-dependent, viz.
rskin ∝ αD ·asym [38], a systematic study with a variety of
EDFs as well as experimental tests in other nuclei would
be important.

To summarize, polarized proton scattering at very for-
ward angles is a tool to study, with high resolution, the
complete electric dipole response of nuclei from low exci-
tation energies up to the GDR. The E1 strength distri-
bution deduced in a benchmark experiment on 208Pb is
in excellent agreement with available data. It provides,
however, new information in the region around the neu-
tron emission threshold where all previous experiments
had limited accuracy. A precise value for the E1 polariz-
ability can be extracted with important consequences for
a determination of the neutron skin and the symmetry
energy in neutron-rich nuclei. Although controversially
discussed [8], rskin may independently be derived from a
similar correlation with the PDR strength [9, 13], which
is accurately determined by the present data as well. Be-
yond these results, the experiment also confirms the spin-
M1 resonance in 208Pb. Furthermore, the fine structure
of the dipole modes contains information on level densi-

ties [40] and characteristic scales [41], giving insight into
their dominant damping mechanisms.

We are indebted to the RCNP for providing excellent
beams. Discussions with P.-G. Reinhard and A. Schwenk
are appreciated. This work was supported by JSPS
(Grant No. 14740154), DFG (contracts SFB 634 and
446 JAP 113/267/0-2). B. R. acknowledges support by
the JSPS-CSIC collaboration program and E. L. by the
LOEWE program of the State of Hesse (HIC for FAIR).
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its density dependence L 

 

comparison to experimental 

and observational constraints 

Lattimer, Lim (2012) 

 

neutron matter constraints 
H: Hebeler et al. (2010) and in prep. 
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GW spectrum frequency-radius correlation
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FIG. 6: Gravitational-wave amplitude of the plus polarization
measured along the polar axis at a distance of 20 Mpc for the
simulation with the Sly4 EoS.
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FIG. 7: Fourier spectrum of the plus polarization of the GW
signal at a distance of 20 Mpc for the Shen EoS. The thick
line displays the spectrum computed from the signal of the
full simulation time, while the thin line shows the spectrum
of the postmerger phase only. The dashed lines give the unity
SNR sensitivity curve of Advanced LIGO (red) and of the
Einstein Telescope (black).

ity. For rather stiff EoSs with Rmax ! 11 km we observe
a low-frequency modulation of the postmerger signal as
in Fig. 5. In contrast, for soft EoSs with relatively small
Rmax such a feature is absent or less pronounced as for
instance in the waveform calculated for the model with
the Sly4 EoS, which is shown in Fig. 6. The reason for
this difference could not be clarified and deserves further
investigation, e.g. in terms of an oscillation mode analy-
sis as in [80]. Furthermore, one recognizes in Fig. 6 that
for this EoS the inspiral phase lasts about 2 ms longer
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FIG. 8: Fourier spectrum of the plus polarization of the GW
signal at a distance of 20 Mpc for the Sly4 EoS. The thick
line displays the spectrum computed from the signal of the
full simulation time, while the thin line shows the spectrum
of the postmerger phase only. The spectrum of a simulation
starting 5.5 revolutions before merging is given by the blue
line. The dashed lines give the unity SNR sensitivity curve of
Advanced LIGO (red) and of the Einstein Telescope (black).

and ends with a larger wave amplitude, which is a conse-
quence of the higher compactness of the inspiraling NSs.
Note that all simulations start with the same initial co-
ordinate distance between the stars.

To obtain spectral information of the GW signal we
compute the dimensionless quantity heff,+ = h̃+(f)f

with the Fourier transformed waveform h̃+(f) of the plus
polarization. The results are displayed in Fig. 7 and
Fig. 8 for the Shen EoS and the Sly4 EoS, respectively.
The thick lines show the spectra calculated from the
whole signal during the simulation time, while the thin
lines correspond to the postmerger phase alone. (Note
that slight differences between the spectrum for the post-
merger signal and the spectrum for the full signal at the
highest frequencies depend on the time chosen to define
the beginning of the postmerger phase.) The dashed lines
belong to the unity signal-to-noise ratio (SNR) sensitivity
curves for Advanced LIGO (red) (broadband configura-
tion) [26] and the planned Einstein Telescope (black) [81].
Note that the low-frequency part of the spectra below
1 kHz computed for the full signal is not reliable be-
cause our simulations start only a few revolutions before
merging and therefore lower frequencies of the preceding
inspiral phase are underrepresented.

A pronounced peak in the spectra at a frequency fpeak

between about 2 and 4 kHz is generic to all models re-
sulting in a DRO. It has a frequency of fpeak = 2.19 kHz
for the Shen model and of fpeak = 3.32 kHz for the Sly4
EoS. This feature clearly originates from the postmerger
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EoSs in different ranges of the peak frequency.

C. Interpretation

In a previous paper we presented arguments why the
dominant oscillation frequency of the differentially rotat-
ing merger remnant scales with the radius of a nonro-
tating NS whose mass is generally smaller than the one
of the remnant [40]. As has been shown in [80], the GW
emission at the peak frequency is generated by the funda-
mental quadrupolar oscillation mode. The frequency of
this mode is known to be proportional to the square root

of the mean density,
√

M
R3 with M and R being the mass

and the radius of the oscillating object (see [85, 86]). The
mass of the merger remnant is approximately given by
the total binary mass and therefore it is the same for all
models discussed in this section neglecting small amounts
of ejecta and differences in the inflated torus surrounding
the central object. Hence, the peak frequency is entirely
determined by the radius of the DRO. The radius of the
merger remnant cannot be defined unambiguously be-
cause one cannot identify a well defined surface of the
object (see e.g. Fig. 5 in [37]). Using arbitrarily the ra-
dius of a sphere enclosing 2.6 M! of rest mass as the
radius of the DRO, Fig. 13 confirms the close relation
between fpeak and the so chosen radius of the merger
remnant Rremnant. Here, Rremnant is measured 8 ms after
merging when the oscillations of the DRO are sufficiently
damped (see Figs. 5 and 6). The radii of the merger rem-
nants for different EoSs are also provided in Tab. II. (The
data point in Fig. 13 with fpeak = 3.2 kHz, which is lo-
cated slightly below the relation (Rremnant = 8.53 km),
corresponds to the fully microphysical BurgioNN EoS,
where our somewhat arbitrary definition of Rremnant fails.
In particular the time, when Rremnant is determined, is
arbitrarily chosen. It should be sufficiently early to char-
acterize the GW emission, but not too early when the
DRO, and thus Rremnant, are still strongly oscillating,
which is the case for the BurgioNN model.)

To understand the correlations found in Figs. 9 to 12,
where the frequency showed a tight anticorrelation with
radii of static TOV configurations, we hypothesize that
for a given EoS the radius of the differentially rotating
merger remnant of about 2.6 M! scales with the ra-
dius RTOV of a nonrotating NS for a chosen mass. This
hypothesis is confirmed when considering Rremnant as a
function of RTOV = R1.35, R1.6, R1.8, or Rmax, of which
the relation with R1.6 shows the smallest scatter. Ne-
glecting effects due to thermal contributions and differ-
ential rotation, a linear relation between Rmax and the
radius of the most massive, uniformly rotating NS con-
figuration was reported in [79]. Adopting therefore a
linear dependence between Rremnant and RTOV, one ex-

pects that fpeak is proportional to R
−3/2
TOV . When fitting a

power law fpeak = a′ ·R−3/2
TOV to the data points of Figs. 9

to 12 similar residuals as listed in Tab. III are found,
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FIG. 13: Peak frequency of the postmerger GW emission ver-
sus the radius of a sphere enclosing 2.6 M! of rest mass of
the merger remnant for all fully microphysical EoSs 8 ms after
merging. Symbols have the same meaning as in Fig. 9.
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FIG. 14: Peak frequency of the postmerger GW emission ver-

sus
√

2.6
R3

1.6
in geometrical units for different EoSs. Symbols

have the same meaning as in Fig. 9.

which implies that in fact there exists a tight relation be-
tween Rremnant and RTOV. Additionally, Fig. 14 shows

the peak frequency as a function of
√

2.6
R3

1.6
, a quantity

which according to the above reasoning is proportional
to the mean density of the merger remnant. This behav-
ior is confirmed by the linear scaling evident from Fig. 14,
which should be considered as an empirical finding of this
work.

The fact that the relation between fpeak and the radius
of a NS with 1.6 M! shows the best quality, can be under-
stood by investigating the involved density regimes. For
a given EoS the central density in the merger remnant

merger of two M∗ = 1.35 M�
neutron stars

strong constraint on the
high-density EoS
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Neutron Star Interior
quark matter

QCD phase diagram (schematic):

T

.µ

.

0

<qq> 
<qq> 

<qq> = 0
<qq> = 0

I frequent assumption:

〈q̄q〉, 〈qq〉 constant in space

I how about inhomogeneous phases ?
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Inhomogeneous phases:
(incomplete) historical overview

I 1960s:
I spin-density waves in nuclear matter

(Overhauser)

I crystalline superconductors
(Fulde, Ferrell, Larkin, Ovchinnikov)

I 1970s – 1990s:
I p-wave pion condensation (Migdal)

I chiral density wave (Dautry, Nyman)

I after 2000:
I 1+1 D Gross-Neveu model (Thies et al.)

I crystalline color superconductors
(Alford, Bowers, Rajagopal)

I quarkyonic matter
(Kojo, McLerran, Pisarski, ... )

Broniowski et al. (1991)
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Model

I NJL model:
L = ψ̄(i∂/−m)ψ + GS

[
(ψ̄ψ)2 + (ψ̄iγ5~τψ)2]

I bosonize: σ(x) = ψ̄(x)ψ(x), ~π(x) = ψ̄(x)iγ5~τψ(x)

⇒ L = ψ̄
(
i∂/−m + 2GS(σ + iγ5~τ · ~π)

)
ψ − GS

(
σ2 + ~π 2)

I mean-field approximation:

σ(x)→ 〈σ(x)〉 ≡ S(~x), πa(x)→ 〈πa(x)〉 ≡ P(~x) δa 3

I S(~x), P(~x) time independent classical fields
I retain space dependence !

I mean-field thermodynamic potential:

ΩMF (T ,µ) = −T
V

ln
∫
Dψ̄Dψ exp

(∫

x∈[0, 1
T ]×V

(LMF + µψ̄γ0ψ)

)
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Mean-field model

I mean-field Lagrangian:

LMF = ψ̄(x)S−1(x)ψ(x)− GS
[
S2(~x) + P2(~x)

]

I bilinear in ψ and ψ̄ ⇒ quark fields can be integrated out!

I inverse dressed propagator:

S−1(x) = i∂/−m + 2GS
(
S(~x) + iγ5τ3P(~x)

)

≡ γ0 (i∂0 −HMF )

I effective Hamiltonian (in chiral representation):

HMF = HMF [S, P] =

(
−i~σ · ~∂ M(~x)
M∗(~x) i~σ · ~∂

)

I constituent mass functions: M(~x) = m − 2G [S(~x) + iP(~x)]

I HMF hermitean ⇒ can (in principle) be diagonalized ( eigenvalues Eλ)
I HMF time-independent ⇒ Matsubara sum as usual
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Mean-field thermodynamic potential

I thermodynamic potential:

ΩMF (T ,µ; S, P) = −T
V

Tr ln
(

1
T

(i∂0 −HMF + µ)
)

+
GS

V

∫

V

d3x
(

S2(~x) + P2(~x)
)

= − 1
V

∑

λ

[
Eλ − µ

2
+ T ln

(
1 + e

Eλ−µ

T

)]
+

1
V

∫

V

d3x
|M(~x)−m|2

4Gs

I remaining tasks:
I Calculate eigenvalue spectrum Eλ[M(~x)] ofHMF for given mass function M(~x).

I Minimize ΩMF w.r.t. M(~x)

I general case: extremely difficult!
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Periodic structures

I crystal with a unit cell spanned by vectors ~ai , i = 1, 2, 3

→ periodic mass function: M(~x + ~ai ) = M(~x)

I Fourier decomposition: M(~x) =
∑
~qk

M~qk
ei~qk ·~x

I reciprocal lattice: ~qk ·~ai
2π ∈ ZZ

I mean-field Hamiltonian in momentum space:

H~pm ,~pn
=



−~σ · ~pm δ~pm ,~pn

∑
~qk

M~qk
δ~pm ,~pn+~qk

∑
~qk

M∗~qk
δ~pm ,~pn−~qk

~σ · ~pm δ~pm ,~pn




I different momenta coupled by M~qk
⇒ H is nondiagonal in momentum space!

I ~qk discrete ⇒ H is still block diagonal
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Periodic structures: minimum free energy

I general procedure:

I choose a unit cell {~ai} ⇒ {~qk}
I choose Fourier components M~qk

I diagonalizeHMF → ΩMF

I minimize ΩMF w.r.t. M~qk

I minimize ΩMF w.r.t. {~ai}

→ still very hard!

→ further simplifications necessary
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One dimensional modulations

I consider only one-dimensional modulations: M(~x) = M(z) =
∑
qk

Mk eikqz

I popular choice: M(z) = M1eiqz (chiral density wave)
I ⇔ S(~x) = ∆ cos(qz) , P(~x) = ∆ sin(qz)
I HCDW can be diagonalized analytically

I important observation: [D. Nickel, PRD (2009)]

The general problem with 1D modulations in 3+1D
can be mapped to the 1 + 1 dimensional case

I 1 + 1D solutions known analytically: [M. Thies, J. Phys. A (2006)]

M(z) =
√
ν∆ sn(∆z|ν) (chiral limit), sn(ξ|ν): Jacobi elliptic functions

I remaining task:
I minimize w.r.t. 2 parameters: ∆, ν
I (almost) as simple as CDW, but more powerful
I m 6= 0: 3 parameters
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Phase diagram (chiral limit)
[D. Nickel, PRD (2009)]
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Mass functions and density profiles (T = 0)

I M(z) =
√
ν∆ sn(∆z|ν) →

{
∆ tanh(∆z) for ν → 1
√
ν∆ sin(∆z) for ν → 0
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I Quarks reside in the chirally restored regions.

I Density gets smoothened with increasing µ and T .
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Including vector interactions
[S. Carignano, D. Nickel, M. Buballa, PRD (2010)]
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Two-dimensional modulations

I consider two shapes:

I square lattice (“egg carton”)

M(x , y ) = M cos(Qx) cos(Qy ) -8 -6 -4 -2  0  2  4  6  8
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I hexagonal lattice

M(x , y ) = M
3

[
2 cos (Qx) cos

(
1√
3
Qy
)

+ cos( 2√
3
Qy )
]

-8 -6 -4 -2  0  2  4  6  8
-8

-6
-4

-2
 0

 2
 4

 6
 8

-1

 0

 1

M
(x

,y
) 

/ 
M

Q x

Q y

M
(x

,y
) 

/ 
M

I minimize both cases numerically w.r.t. M and Q
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Two-dimensional modulations: results
[S. Carignano, M. Buballa, arXiv:1203.5343]

I amplitudes and wave numbers:
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Two-dimensional modulations: results
[S. Carignano, M. Buballa, arXiv:1203.5343]
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Conclusions

I nuclear physics constrants on the NS EoS
I dipole polarizability of 208Pb→ neutron skin thickness
I skin thickness→ density dep. of symmetry energy
I gravitaional waves signals

I Inhomogeneous chiral phases
I 1st-order line and critical point covered by an inhomogeneous region
I inhomogeneous phase rather stable w.r.t. vector interactions
I 1d modulations favored at “moderate” µ
I 2d modulations might be favored at higher µ

I observational signatures?

I EoS and elastic properties?
I ν-transport and cooling?

I interplay with CSC?
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