Modeling Hybrid Stars in Quark-Hadron Approaches

OUTLINE

- hadronic SU(3) model
- adding quarks
- alternative chiral formulation

V. Dexheimer, R. Negreiros, J. Steinheimer, T. Schürhoff, SWS FIAS Frankfurt, Gettysburg/Kent State, LLBL, Fluminense

Lattimer, Prakash, astro-ph:1012.3208

Masses of Neutron Stars

Masses of radio pulsars

Kiziltan, Kottas, Thorsett, astro-ph:1011.4291

no signature for mass cut off

M = (2.4 +- 0.12) M_s ? van Kerkwijk et al., ApJ 728, 95 (2011)

current benchmark for NS models

Demorest et al. Nature 467, 1081 (2010)

well established heavy neutron stars

hadronic model based on non-linear realization of chiral symmetry

degrees of freedom SU(3) multiplets:

baryons (n,Λ, Σ, Ξ) scalars $(\sigma, \zeta, \delta^0)$ vectors (ω, ρ, ϕ) , pseudoscalars, glueball field χ

A) SU(3) interaction

$$\sim \ Tr \ [\ \overline{B}, M \]_{\pm} \ B \quad , \ (\ Tr \ \overline{B} \ B \) \ Tr \ M$$

B) meson interactions

 $\sigma \sim \langle u \,\overline{u} + d \,\overline{d} \rangle \qquad \zeta \sim \langle s \,\overline{s} \rangle \qquad \delta^0 \sim \langle u \,\overline{u} - d \,\overline{d} \rangle$ $\sim V(M) \qquad \langle \sigma \rangle = \sigma_0 \neq 0 \qquad \langle \zeta \rangle = \zeta_0 \neq 0$

C) chiral symmetry $m_{\pi} = m_{K} = 0$

explicit breaking ~ Tr [$c \sigma$] (~ $m_q \overline{q} q$)

fix scalar parameters to baryon masses, decay constants, meson masses

degrees of freedom

$$B = \begin{pmatrix} \Sigma^{0}/\sqrt{2} + \Lambda/\sqrt{6} & \Sigma^{+} & p \\ \Sigma^{-} & -\Sigma^{0}/\sqrt{2} + \Lambda/\sqrt{6} & n \\ \Xi^{-} & \Xi^{0} & -2\Lambda/\sqrt{6} \end{pmatrix}$$
 baryons
diag (V) = { (\omega + \beta) / \sqrt{2}, (\omega - \beta) / \sqrt{2}, \omega } vector mesons
diag (X) = { (\omega + \beta) / \sqrt{2}, (\omega - \beta) / \sqrt{2}, \omega } scalar mesons
Scalar self interaction L₀ = -1/2 k₀ l₂ + k₁ (l₂)² + k₂ l₄ + 2 k₃ l₃ + L_{ESB}
invariants l₁ = Tr(X) l₂ = Tr (X)² l₃ = det (X)

+ dilaton field $L_{\chi} = -k_4 \chi^4 - \frac{1}{4} \chi^4 \ln (\chi^4/\chi_0^4) + \delta/3 \chi^4 \ln (I_3/<X>)$

fix scalar parameters to baryon masses, decay constants, scalar meson masses + term prop $(X - X_0)$, breaks SU(3)

Nuclear Matter and Nuclei

binding energy $E/A \sim -15.2 \text{ MeV}$ saturation $(\rho_B)_0 \sim .16/\text{fm}^3$ compressibility $\sim 223 \text{ MeV}$ asymmetry energy $\sim 31.9 \text{ MeV}$

parameter fit to known nuclear binding energies and hadron masses

2d calculation of all measured (~ 800) even-even nuclei good charge radii $\delta r_{ch} \sim 0.5 \%$ (+ LS splittings) relativistic nuclear error in energy $\epsilon (A > 50) \sim 0.21 \%$ (NL3: 0.25 %) $\epsilon (A > 100) \sim 0.14 \%$ (NL3: 0.16 %)

+ correct binding energies of hypernuclei

new fit in the works by T. Schürhoff currently $~\epsilon$ ~0.28 , κ ~300 MeV, M ~2 M_{\odot}

SWS, Phys. Rev. C66, 064310

Neutron star masses including different sets of particles

Tolman-Oppenheimer-Volkov equations, static spherical star

changing masses with degrees

large star masses even with spin 3/2 resonances

tuned parameters

particle densities inside of the star

particle numbers as function of density uncertainties from $g_{3/2}$ coupling

Impact of Φ field

rescale $g_{B\Phi}$ coupling parameters

rather generic observation - no YY interaction \rightarrow very small star masses

Use Nijmegen potential + Argonne/Urbana / TBF

Schulze, Rijken, PRC 84, 035801 (2011)

Remark about SU(6) fllavor-spin symmetry

SU(3) three couplings for baryon-meson interaction, SU(6) one constant $L_{BW} = -\sqrt{2} g_8^W (\alpha_W [\overline{B}OBW]_F + (1 - \alpha_W) [\overline{B}OBW]_D)$ $- g_1^W / \sqrt{3} Tr(\overline{B}OB) Tr (W)$

 $[\overline{B}OBW]_{F} = Tr(\overline{B}OBW - \overline{B}OWB) [\overline{B}OBW]_{D} = Tr(\overline{B}OBW + \overline{B}OWB) - 2/3 Tr(\overline{B}OB) Tr(W)$

usually only applied for vector meson interaction
$$2 M_S$$
 possibleSU(6) $g_{N\omega} : g_{\Delta\omega} : g_{\Xi\omega} = 3 : 2 : 1$ $g_{N\Phi} : g_{\Delta\Phi} : g_{\Xi\Phi} = 0 : 1 : 2$ However – deviating from SU(6) deviation, keeping SU(3) leads to $g_{N\Phi} \neq 0$

$$g_{N\phi} = \sqrt{2} g_8 - 1/\sqrt{3} g_1$$
 $g_1/g_8 (SU6) = \sqrt{6}$

Experiments/Lattice show very small strangeness vector form factor

strange vector form factor of nucleon

 χ QCD collaboration small values for μ_s and r_s ,

PRD80 094503 (2009)

playing around with the Δ baryon

Data from Özel et al, astro-ph:1002.3153

see however, Steiner et al, astro-ph:1005.0811

connect hadronic and quark degrees of freedom

$$\Phi = \frac{1}{N_c} \text{Tr}_c L \qquad \qquad L(\vec{x}) = \mathcal{P} \exp\left[i \int_0^\beta d\tau A_4(\vec{x}, \tau)\right]$$

order parameter of the phase transition

 $\langle \Phi
angle = 0$ confined phase $\langle \Phi
angle
eq 0$ deconfined phase

effective potential for Polyakov loop, fit to lattice data $U = -\frac{1}{2} a(T) \Phi \Phi^* + b(T) \ln[1 - 6 \Phi \Phi^* + 4 (\Phi \Phi^*)^3 - 3 (\Phi \Phi^*)^2]$

 $a(T) = a_0 T^4 + a_1 \mu^4 + a_2 \mu^2 T^2$

baryonic and quark mass shift $\delta m_B \sim f(\Phi) \delta m_q \sim f(1-\Phi)$

quarks couple to mean fields via g_{σ}^{q} , g_{ω}^{q} minimize grand canonical potential

V. Dexheimer, SWS, PRC 81 045201 (2010)

Ratti et al. PRD 73 014019 (2006) Fukushima, PLB 591, 277 (2004)

Maxwell / Gibbs construction for local / global charge neutrality M-R diagram in QH model

baryonic star with a 2km core of quarks

Negreiros, Dexheimer, SWS, PRC82 035803 (2010)

g'_{Hω}/g_{Hω}

relatively small changes in M, M_{max} substantial decrease in central density

Negreiros, Dexheimer, SWS, PRC82 035803 (2010)

hadrons, quarks, Polyakov loop and excluded volume

Include modified distribution functions for quarks/antiquarks

$$\Omega_q = -T \sum_{j \in Q} \frac{\gamma_i}{(2\pi)^3} \int d^3k \ln\left(1 + \Phi \exp\frac{E_i^* - \mu_i}{T}\right)^*$$

Φ confinement order paramete^{*}

Following the parametrization used in PNJL calculations

$$U = -\frac{1}{2} a(T) \Phi \Phi^* + b(T) \ln[1 - 6 \Phi \Phi^* + 4 (\Phi \Phi^*)^3 - 3 (\Phi \Phi^*)^2]$$

$$a(T) = a_0 T^4 + a_1 T_0 T^3 + a_2 T_0^2 T^2$$
, $b(T) = b_3 T_0^3 T$

The switch between the degrees of freedom is triggered by excluded volume corrections

thermodynamically consistent -

no reconfinement!

$$V_{q} = 0$$

$$V_{h} = v$$

$$\widetilde{\mu}_{i} = \mu_{i} - v_{i} P$$

$$e = \widetilde{e} / (1 + \Sigma v_{i} \widetilde{\rho}_{i})$$

$$V_{m} = v / 8$$

Steinheimer, SWS, Stöcker JPG 38, 035001 (2011)

equation of state stays causal!

Results of the model at zero density

Reasonable agreement with lattice QCD natural mixed phase of hadrons and quarks no first-order transition

Order parameters for chiral symmetry and confinement in $\boldsymbol{\mu}$ and T

except for liquid-gas no first-order transition

star matter in beta equilibrium

1st order phase transition in star matter possible

cross over in symmetric matter

$$f_s(core) = 0.6$$
 jumps to ~ 1

Star masses M(R)

Mass ~ 2.2 M_{\odot} $\,$ Radius ~13 km depends on quark vector interaction

particle cocktail

reasonable values for compressibility and asymmetry

large mixed phase (no Gibbs)

dense matter and stars in a parity doublet model

- treat N, N* as positive/negative parity doublet

transformation:

$$\psi_{1R} \longrightarrow R\psi_{1R}, \quad \psi_{1L} \longrightarrow L\psi_{1L},$$

 $\psi_{2R} \longrightarrow L\psi_{2R}, \quad \psi_{2L} \longrightarrow R\psi_{2L}.$

chirally invariant mass term

$$m_0(\bar{\psi}_2\gamma_5\psi_1 - \bar{\psi}_1\gamma_5\psi_2) = m_0(\bar{\psi}_{2L}\psi_{1R} - \bar{\psi}_{2R}\psi_{1L} - \bar{\psi}_{1L}\psi_{2R} + \bar{\psi}_{1R}\psi_{2L})$$

standard σ model + vector mesons (ω , ρ) diagonalize mass matrix ψ_1 , ψ_2 to N N* with

$$M_{N\pm}^* = \sqrt{\left[\frac{(M_{N_+} + M_{N_-})^2}{4} - m_0^2\right]\frac{\sigma^2}{\sigma_0^2} + m_0^2} \quad \pm \frac{M_{N_+} - M_{N_-}}{2}\frac{\sigma}{\sigma_0}$$

degenerate in the chiral limit

Dexheimer et al., PRC 77, 025803 (2008); EPJA 38, 105 (2008) Zschiesche et al., PRC 75, 055202 (2007) DeTar and Kunihiro,PRD 39, 2805 (1989) Hatsuda and Prakash, PLB 224, 11 (1989) scan of possible parameters

SU(2) constraint – reproduce basic n.m. saturation properties

 $E/A - m_N = -16 \pm 0.5 \text{ MeV}$ $\rho_0 = 0.15 \pm 0.015 \text{ fm}^{-3}$

mass of the parity partner possibility N*(1535) - *unclear keep mass as parameter* $(m_{\sigma} g_{\omega} m_{N^*} m_0)$ $m_{N^*} = 1200 \text{ MeV}$

V. Dexheimer et al., PRC 77, 025803

Star Masses and Particles

Extension of the parity model to SU(3)

Baryon SU(3) multiplet + parity doublets

Similar approach, SU(3)-invariant potential for scalar fields

single particle energies $E_{\pm} = \sqrt{(g_1\sigma + g_2\varsigma)^2 + m_0^2} \pm (g_1\sigma + g_2\varsigma)$

simplify investigation - same mass shift for whole octet

Candidates – $\Lambda(1670)$, $\Sigma(1750)$, Ξ (?) overall unclear

Steinheimer, SWS, Stöcker, JPhysG 38, 035001 (2011)

first study - Nemoto et al. PRD 57, 4124 (1998)

scalar condensate for different masses m_{N*}

First order transition for masses ≥ 1470 MeV, below crossover

results for hot matter at vanishing chemical potential

points are various lattice results

Neutron stars including quarks in the SU(3) parity doublet model

Improve on excluded volume treatment - not that trivial!

particle densities inside of the star for the parity doublet model

parameters (A)

Dexheimer, Steinheimer, Negreiros, SWS, arXiv:1206.3086

Including vector interaction for quarks

increase M / R, potential problems at μ = 0

Hybrid Stars, Quark Interactions

baryons alone M_{max} ~1.8 M_{solar}

ingredients – Standard baryonic EOS (G300) plus MIT bag model + α_s corrections

Fast cooling in the quark core need gaps in the quark phase

Negreiros, Dexheimer, SWS, PRC 035805 (2012)

Quarks as Hadron Look-Alikes

 $\Omega_q \sim c a_4 \mu^4 + b a_2 \mu^2 + B_{eff}$

 $a_4 < 1$: perturbative QCD corrections $a_2 \sim m_s^2 - 4 \Delta^2$

a₄ ~0.7 Fraga et al. PRD63 121702 (2001)

 $a_2 = (150 \text{ MeV})^2$

Similar EOS \rightarrow similar M(R) diagram Hybrid star: $M_{max} \sim 2 M_{solar}$

Alford, Braby, Paris, Reddy, APJ 629, 969 (2005)

nucleons plus hyperons NJL with 2SC/CFL + vector repulsion

 $M_{max} \sim 1.98 M_{solar}$

Include various phases heavy star

quark – hadron phases become similar again "look-alikes"

Bonanno, Sedrakian A&A 539, A16 (2012) Susceptibilitiy c₂ in PNJL and QH model for different quark vector interactions

 $P(T,\mu) = P(T) + c_2(T) \mu^2 T^2 + \dots$

small quark vector repulsion !!

PNJL

Steinheimer, SWS, PLB 696, 257 (2011)

analogous behaviour of strange susceptibilitiy

$$X_s = d^2(P) / (d \mu_S)^2 |_{\mu B, \mu S = 0}$$

calc. by Philip Rau

Conclusions

- 2 M_S does not preclude hyper-/hybrid stars
- SU(3) approach with dynamical baryon masses produces still reasonable star masses, need Φ
- Excluded volume effects interesting phase structure and heavy masses
- In general, similar results with parity doublet model
- Hybrid star approach tends to generate problems with small μ_{B} physics

Include magnetic fields

magnetars - up to 10¹⁵ Gauss surface field

 $T^{F}_{\mu\nu} = diag(\frac{1}{2}B^{2}, \frac{1}{2}B^{2}, \frac{1}{2}B^{2}, -\frac{1}{2}B^{2})$

energy-momentum tensor not isotropic consistent modeling of star needed

2d calculations: Bocquet et al. A&A 301, 757 (1995) Cardall et al. APJ 554, 322 (2001)

Small changes for B_c up to 10^{19} G

deconfinement transition magnetic field stiffens hadronic EOS moves transition to somewhat higher μ_B Cooling behavior is slightly modified

Dexheimer, Negreiros, SWS, astro-ph:1108.4479

Different schemes for non-linear vector interactions

diag(V_µ) = { (ω + ρ)/ $\sqrt{2}$, (ω - ρ)/ $\sqrt{2}$, ϕ }

Dexheimer, SWS ApJ 683, 943 (2008) SWS PLB 560 164 (2003)

kaon energies as function of density for neutron star at T = 0

Mishra, Kumar, Sanyal, SWS, EPJA 41, 205

Particle population in nuclear matter in beta equilibrium

particle mix not too exotic for reasonably large densities