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1) INTRODUCTION

Compact stars (without rotation) can oscillate in different forms:

Radial oscillations: They are useful to study the stability of
compact stars when perturbed.

Non-radial oscillations: They are sources of gravitational
radiation and their observation is a very important tool to study the
internal composition of compact stars.




FAMILIES OF NON-RADIAL MODES

f-modes: frequency is proportional to the square root of the mean
density of the star.

p-modes: pressure is the restoring force, frequencies are greater
than those of the f-modes.

g-modes: buoyancy is the restoring force, frequencies are lower
than those of the f-modes. They are present when there exist
temperature gradients or density discontinuities.

w-modes: they are pure gravitational modes, fluid is not
perturbed.




How we calculate the f and p modes?

1) Choose an EoS (hadronic/quarks).

2) Construct an equilibrium model by solving the TOV equations

=> pressure, energy density profiles, etc: p(r), p(r),...

3) Solve the equations for the perturbed model (oscillation equations).




2) EQUATIONS OF STATE

Hadronic matter

We use the relativistic field model to describe hadronic matter. We
adopt the following Lagrangian [Glendenning & Moszkowski 1991]
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For matter composed by baryons, mesons, and leptons. For more
details see [Lugones et al. 2010].




We use two different set of parameters shown in the following
table [Glendenning & Moszkowski 1991, Lalazissis 1997]:

Set GM1 NL3
me (MeV) 512 508.194
me (MeV) 783 782.501
m, (MeV) 770 763

Go 8.91 10217

G 10.61 12.868

6 8.196 3.948

b 0.002947 0.002055
C -0.001070 -0.002651
M az 2.32 2.73




Strange Quark matter
We use Witten hypothesis.

Bag model and QCD corrections

We use the modified bag model [Alford et al. 2005, Weissenborn et al.
2011]
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Where B, is the bag constant and the a, term is related to corrections
from QCD.

a, = 1 corresponds to no QCD corrections.

Small values of a, < 1, corresponds to stronger corrections.




Color Flavor Locked phase (Color superconductivity)

There are Cooper pairs between quarks of different flavor and
color.

We use the bag model [G. Lugones & J. Horvath 2002 ]
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Where A is the superconducting gap, and B is the bag constant.




How we set the parameters ?

1) We require non-strange quark matter to have binding energy
per baryon higher than that of the most stable atomic nucleus °¢Fe
(Farhi & Jaffe 1984).

E = <i> > m, = 939MeV
u, d

np

2) We also implement the strange matter hypothesis (Bodmer 1971,

Witten 1984):

E = (i> < m,, = 939MeV
"B/ sqm

We use set of parameters that allow masses greater than 2 solar
masses in the light of recent observations. [Demorest et al. 2010]

By using the Lagrangian of hadronic matter and the potentials for quark
matter we can obtain the equation of state: P=P(p)




3) EQUILIBRIUM MODEL

We consider the following background metric:

ds® =—-e®"dt* +e*"dr? + r*(d6* +sin’ 0d¢*)
and the stress-energy tensor of a perfect fluid:

T, =(p+puu,+pg,

We obtain the TOV equations from Einstein’s equations :
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From TOVs we can obtain m(r), p(r), and other necessary
quantities to solve the perturbed model.




4) PERTURBED MODEL

We consider the perturbed metric guv = g,(,fj) + Ay
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And obtain the perturbed Einstein’s tensor: G,=G,+0G,

We also consider perturbations in the fluid
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And obtain the perturbed stress-energy tensor: 1, =1  + (5TW




We put the perturbed quantities into the Einstein’s equations and
obtain the perturbed equations:

(B)
G,=G,+0G,
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We will consider the Cowling approximation: If the
oscillations are present near the surface, the gravitational

field is weakly perturbed, and we can set to zero the metric
perturbations [MacDermott 1983].

Then, we can obtain the oscillation equations [Sotani et al. 2011]
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The coefficients are determined from the TOV equations
(equilibrium model)




Boundary conditions:

At the center we have the regularity conditions

V(r)=-Cr' /1+0G"™)

W) =Cr'*' +O'™)

At the surface the lagrangian perturbation in the pressure is zero
Ap=0

o’ re®**V+dWwW =0




5) NUMERICAL METHOD

1)

2)

TOV equations are solved by a Runge Kutta method (integration until
p is zero at the surface)

Oscillations equations are solved by a shooting method, which
consists in:

Choose a trial frequency, use boundary conditions atr = 0.
Numerical integrate the Oscillations equations from the

center to the surface.

Check if the boundary conditions at the surface are satisfied, if not,
take again a new trial frequency. If yes we have calculated the

frequency.




6)RESULTS L T ' B120 A100 e
I B100 A100 ===

3.5
f-mode (fundamental : f=w/2r B60 unpaired -
- B60 A75 - ner

m ; BB0 A100 -weeveeeee:
ode) 8 ’ B60 A150

: B34a55
J B41a65

.y
"y
.......
.....
------
.......................

-y
Ty
"
- »
I - - -
' T

Blue lines for CFL stars,
Green lines for Bag
model with QCD
Corrections, black lines
for hadronic stars.

fi [kHZ]

M [solar masses]
1) Large maximum masses for small B and large A.
2) For CFL stars f. decreases as A is increased.
3) CFL stars have f.~ 2 — 3 Khz.
2) Profiles for hadron stars and quark stars are qualitatively very different.
3) For hadron stars f;increases roughly linearly with the mass.

4) In contrast f;doesn’t change considerably with the mass in the case of quark
stars.
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Again there is a large difference between results for hadron and
quark stars.

For a hadron stars the frequencies of the p1 modes are typically in
the range 4 — 10 khz.

For quark stars frequencies are in the same range for massive
stars, but they increase significantly for low mass stars.




7) CONCLUSIONS

1) For quark stars the frequency of the fundamental mode has a small
varitation with the mass.

2) For CFL stars f; decreases as A is increased.

3) We have found f; ~2 — 3 Khz for parameters of the EoS that result
stars with a maximum mass above 2 solar masses.

4) As in the case of f;, the p1 modes also are very different to the
corresponding modes of hadron stars.

5) Cowling approximations is a good tool to stud?/ qualitatively the effect
of the EoS In the frequencies of the non-radial modes.
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