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1) INTRODUCTION 
 

Compact stars (without rotation) can oscillate in different forms: 

 

Radial oscillations: They are useful to study the stability of 
compact stars when perturbed. 

 

 

Non-radial oscillations: They are sources of gravitational 
radiation and their observation is a very important tool to study the 
internal composition of compact stars.  
 



FAMILIES OF NON-RADIAL MODES  
 
 

f-modes: frequency is proportional to the square root of the mean 
density of the star.  

p-modes: pressure is the restoring force, frequencies are greater 
than those of the f-modes. 

g-modes: buoyancy is the restoring force, frequencies are lower 
than those of the f-modes. They are present when there exist 
temperature gradients or density discontinuities. 

w-modes: they are pure gravitational modes, fluid is not 
perturbed. 



How we calculate the f and p modes? 
 

1)  Choose an EoS (hadronic/quarks).  

  

2)   Construct an equilibrium model by solving  the TOV equations  

      =>   pressure, energy density profiles, etc:  p(r), ρ(r),… 

 

3)   Solve the equations for the perturbed model (oscillation equations). 

 



2) EQUATIONS OF STATE  

Hadronic matter 
We use the relativistic field model to describe hadronic matter. We 
adopt the following Lagrangian [Glendenning & Moszkowski 1991] 

 

 

 

 

 

 

 

 

For matter composed by baryons, mesons, and leptons. For more 
details see [Lugones et al. 2010]. 
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ten [18] and Farhi & Jaffe [19] who realized that objects
completely composed by deconfined matter could exist if
the energy per baryon of quark matter at vanishing pres-
sure and zero temperature is less than the neutron mass
(the so called “absolute stability” condition [18, 19]).
Within the frame of the MIT bag model, strange stars are
possible for some values of the parameters of the equation
of state; i.e., the strong coupling constant αs, the strange
quark mass ms and the bag constant B [19]. This early
result was obtained without considering the possibility
of color superconductivity. However, it is now clear that
attractive quark-quark interactions lead to pairing and
color superconductivity, a subject already addressed in
the early 1980s [20] which came back some years ago af-
ter the realization that the typical superconducting gaps
in quark matter may be larger than those predicted in
these early works [21]. The phase diagram of QCD has
been analysed in the light of color superconductivity and
model calculations suggest that the phase structure is
very rich (see e.g. [22] and references therein). However,
at sufficiently large densities it turns out that the ground
state is the so called color-flavor locked (CFL) phase.
Moreover, color superconductivity enlarges considerably
the window in the parameter space where strange mat-
ter is allowed, i.e. a “color superconducting strange mat-
ter” is allowed for the same parameters that would oth-
erwise produce unbound strange matter [23–25]. This
affects considerably the mass-radius relationship of CFL
stars, allowing for very large maximum masses [24, 25]
and changing considerably other global properties such
as the spectrum of the radial oscillation modes [26].

The first study of non-radial oscillations of strange
quark stars was performed by Yip, Chu and Leung [27]
who addressed the relativistic quadrupole oscillations
(l = 2) of both strange-quark stars and hybrid stars
(hadron stars with quark cores). Their calculations show
significant differences in the oscillation frequencies of
quark stars and hybrid stars for the higher axial and polar
w-modes. Also, the f -modes for quark stars are different
from those of realistic hadron stars. In general, stars with
quark matter are more efficient gravitational-wave radi-
ators than pure hadron stars. Also, the damping times
of various modes are rather sensitive to the details of
the quark model, such as the Bag constant, quark-gluon
interactions, and quark mass corrections [27]. Further in-
vestigations analysed the possibility that the detection of
gravitational waves emitted by compact stars may allow
to constrain the MIT bag model of quark matter equation
of state [29, 30]. Their results show that the combined
knowledge of the frequency of the emitted gravitational
wave and of the mass, or the radiation radius, of the
source allows one to discriminate between strange stars
and neutron stars and set stringent bounds on the bag
constants. More recent work, analyses stellar oscillations
including the hadron-quark mixed phase [31] finding that
it is possible to distinguish whether a density disconti-
nuity exists or not within a compact star, even if one
observes only the gravitational waves of the fundamental

mode.
Concerning pure hadronic stars, lot of work has been

done since in the last decade. However, the recent obser-
vation of compact stars with M > M! []

In this work, we study f and p modes of self-bound
stars composed by CFL quark matter within the rela-
tivistic Cowling approximation. The paper is organized
as follows: in Sec. II we describe the EoS of CFL quark
matter. In Sec. III we present the equations that gov-
ern fluid oscillations within the Cowling approximation.
In Sec. IV we present our results. We conclude with a
discussion of the results in Sec. V.

II. EQUATION OF STATE

A. Hadronic Phase

The relativistic mean-field model is widely used to de-
scribe hadronic matter in compact stars. In this paper
we adopt the following standard Lagrangian [? ? ]:

LH =
∑

B

ψ̄B [γµ(i∂
µ − gωBω

µ − 1

2
gρB&τ .&ρ
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− (mB − gσBσ)]ψB +
1

2
(∂µσ∂

µσ −m2
σσ

2)

− 1

4
ωµνω

µν +
1

2
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ωωµω
µ − 1
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&ρµν .&ρ

µν

+
1

2
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ρ&ρµ.&ρ
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3
bmn(gσσ)

3 − 1

4
c(gσσ)

4

+
∑

L

ψ̄L[iγµ∂
µ −mL]ψL, (1)

for matter composed by (i) nucleons and electrons, and
(ii) the baryon octet and electrons. Leptons L are treated
as non-interacting and baryons B are coupled to the
scalar meson σ, the isoscalar-vector meson ωµ and the
isovector-vector meson ρµ. For more details about the
EoS obtained from the above Lagrangian the reader is
referred to e.g. [? ] and references therein. There are
five constants in the model that are fitted to the bulk
properties of nuclear matter [? ]. In this work we use
three different parametrizations shown in Table I. For
all parametrizations we use a composition of nucleons
and electrons. For the NL3 parametrization we con-
sider also the case with the baryon octet and electrons.
The parametrization for the hyperon coupling constants
is gωΛ/gωN = gωΣ/gωN = 0.6666, gωΞ/gωN = 0.3333,
gσΛ/gσN = 0.6106, gσΣ/gσN = 0.4046, gσΞ/gσN =
0.3195 and gρi/gρN = 1 [? ]. At low densities we use
the Baym, Pethick and Sutherland (BPS) model [? ].

B. Quark matter

The equation of state for the CFL phase can be ob-
tained in the framework of the MIT bag model. To order



 

We use two different set of parameters shown in the following 
table [Glendenning & Moszkowski 1991, Lalazissis 1997]: 
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TABLE I. Coupling constants for the parametrizations GM1
[? ] and NL3 [? ]. Mmax is the maximum mass of a pure
hadronic star for matter composed by nucleons and electrons.

Set GM1 NL3

mσ (MeV) 512 508.194

mω (MeV) 783 782.501

mρ (MeV) 770 763

gσ 8.91 10.217

gω 10.61 12.868

gρ 8.196 8.948

b 0.002947 0.002055

c -0.001070 -0.002651

Mmax 2.32 2.73

∆2, the thermodynamic potential ΩCFL can be expressed
as [23]

ΩCFL = Ωfree −
3

π2
∆2µ2 +B, (2)

being Ωfree the thermodynamic potential of a state of
unpaired u, d and s quarks in which all them have a
common Fermi momentum ν, with ν chosen to minimize
Ωfree:

Ωfree =

∫ ν

0

6p2dp

π2
[p−µ]+

∫ ν

0

3p2dp

π2
[
√
p2 +m2

s−µ]. (3)

The binding energy of the diquark condensate is included
in the condensation term proportional to ∆2µ2 where the
chemical potential µ ≡ (µu + µd + µs)/3 is related to ν
through ν = 2µ− (µ2 +m2

s/3)
1/2, being ms the mass of

the strange quark. Confinement is introduced through a
phenomenological vacuum energy density or bag constant
B.
From the ΩCFL given above we can obtain the equation

of state to order m2
s [23]:

p =
ε

3
− 4B

3
+

3α µ2

π2
, (4)

where p is the pressure, ε is the mass-energy density, and
µ and α are given by

µ2 = −α+

[
α2 +

4

9
π2(ε−B)

]1/2
, (5)

α = −m2
s

6
+

2∆2

3
. (6)

For the oscillation equation (see Sec. III) we need the
adiabatic index γ = (ε + p)p−1dp/dε. From Eq. (4) we
have

dp

dε
=

1

3
+

6αµ

π2

dµ

dε
. (7)

The derivative dµ/dε can be calculated from Eq. (5):
dµ/dε = π2(9µ)−1[α2 + 4π2(ε−B)/9]−1/2. Thus, we
have

dp

dε
=

1

3
+

2α

3

(
1

µ2 + α

)
, (8)

which allows to write the adiabatic index γ as a function
of p or ε.

Since the values of B, ms and ∆ are not accurately
known we shall consider them as free parameters in the
equation of state. We emphasize that all the values of
B, ms and ∆ employed in this paper fall inside the sta-
bility windows presented in Fig. 2 of Ref. [23]; i.e. we
always obtain self-bound strange stars when integrating
the stellar structure equations. Additionally, the param-
eters satisfy the stability condition m2

s < 2µ∆ given in
Ref. [32].

In our calculations of the oscillation modes we shall
also employ the MIT equation of state for a gas of un-
paired massless quarks, i.e. ε = 3p+4B. Notice that un-
paired matter is the same that CFL matter with ∆ = 0
only if all the quark masses are zero. If ms is not zero,
the Fermi momenta of u, d and s quarks are different for
unpaired quark matter, but they are still the same for
CFL matter.

III. THE EQUATIONS FOR NON-RADIAL
FLUID OSCILLATIONS

In this work we employ the general relativistic pul-
sation equations within the Cowling approximation as
derived by McDermott, Van Horn and Scholl [9]. To ob-
tain these equations, fluid and space-time perturbations
are decomposed into spherical harmonics Y l

m(θ,φ) and a
sinusoidal time dependence exp(iωt) with frequency ω.
Within the relativistic Cowling approximation the per-
turbations in the metric are set to zero. The Lagrangian
fluid displacements that represent the infinitesimal oscil-
latory perturbations of the star are [9]:

δr = Re[r−2e−λ/2W (r)Y l
m(θ,φ)eiωt], (9)

δθ = Re[−r−2V (r)∂θY
l
m(θ,φ)eiωt], (10)

δφ = Re[−r−2 sin−2 θV (r)∂φY
l
m(θ,φ)eiωt], (11)

where W (r) and V (r) are the fluid perturbation func-
tions. The pulsation equations read [9]:

(1 + dp)
dZ1

dx
=

[
dp
γ

− 1− l

]
Z1

+

[
l(l + 1)

m

ω2r3
eλ/2 − dp

γβ

]
Z2, (12)

(1 + dp)
dZ2

dx
= eλ/2

[
ω2r3

m
+A+rβ

]
Z1

+

[
3− l − dm −A−e

λ/2r

]
Z2, (13)



Strange Quark matter  
We use Witten hypothesis. 

Bag model and QCD corrections 
 
We use the modified bag model [Alford et al. 2005, Weissenborn et al. 
2011] 
 
 
 
 
Where Beff is the bag constant and the a4 term is related to corrections 
from QCD. 
 
a4 = 1 corresponds to no QCD corrections. 
 
Small values of a4 < 1, corresponds to stronger corrections. 
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new mass limit of Demorest et al. (2010). Quark matter is
described by a bag model EoS with first-order corrections
from the strong interaction coupling constant and effects from
finite strange quark mass and color-superconductivity. For the
hybrid star calculations, we use the two different relativistic
mean-field (RMF) parameter sets TM1 (Sugahara & Toki 1994)
and NL3 (Lalazissis et al. 1997), to explore the influence
of the hadronic part of the EoS. In our calculations, we do
not include hyperons which can alter the quark–hadron phase
transition (Bhattacharyya et al. 2010). However, their exact role
is currently an open question (see, e.g., Yasutake et al. 2010).
Therefore, in this work, we will focus on non-strange hadronic
matter. We consider the two possible extreme cases for the phase
coexistence between quark and hadronic matter: the Maxwell
transition, corresponding to a very large surface tension of quark
matter (Heiselberg et al. 1993), and the Gibbs construction
(Glendenning 1992) which completely neglects Coulomb and
surface energies.

In the following we will describe our results and compare
them with the aforementioned studies. Sections 2.1 and 2.2 are
devoted to quark stars with unpaired and color-superconducting
quark matter in the color–flavor–locked (CFL) phase, respec-
tively. Hybrid stars are discussed in Section 3.

2. QUARK STARS

2.1. Unpaired Quark Matter

For the strange quark matter, we take the modified bag model:

ΩQM =
∑

i=u,d,s,e

Ωi +
3µ4

4π2
(1 − a4) + Beff, (1)

where Ωi are the Grand potentials for the up, down, and
strange quarks and electrons describing these as non-interacting
fermions. We choose the strange quark mass to be ms =
100 MeV (Amsler et al. 2008) while the masses of the up
and down quarks and electrons are set to zero. In the sense
of the generic quark matter EoS from Alford et al. (2005), we
have added the a4 term with the baryon chemical potential µ
of the quarks in order to account for corrections from strong
interaction. The usual approach in quark bag models is to unite
all non-perturbative effects of the strong interactions into a
bag constant B. The EoS can then be extended by including
first-order corrections in the strong coupling constant (see, e.g.,
Fraga et al. 2001). The quark bag model in Equation (1) is
motivated by this approach. However, since quark star matter
is not in the perturbative regime, we consider a4 and the bag
constant as effective parameters, denoting the latter by Beff ,
and explore their whole parameter range. Therefore, we vary
a4 from a4 = 1, which corresponds to no QCD corrections,
to small values when the corrections are strong. Equation (1)
enables us to compute the pressure, energy density, and baryon
number density assuming charge neutrality and β-equilibrium.
By solving the Tolman–Oppenheimer–Volkoff equations we
obtain the maximum quark star masses.

Following Farhi & Jaffe (1984), we require non-strange
quark matter in bulk to have a binding energy per baryon
higher than that of the most stable atomic nucleus, 56Fe, which
is 930 MeV, plus a 4 MeV correction coming from surface
effects. By imposing that E/A ! 934 MeV for two-flavor
quark matter at ground state, we ensure that atomic nuclei do
not dissolve into their constituent quarks. Thereby we obtain
an upper limit on the maximum mass of strange quark stars
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Figure 1. Maximum masses of unpaired strange quark stars as a function of Beff
and a4. The green shaded area marks the allowed parameter region according
to the constraints of the existence of nuclei (two-flavor line), absolute stability
of strange quark matter (three-flavor line), stability of fast rotating stars (Kepler
line), and the mass of PSR J1614-2230 including its 1σ error.
(A color version of this figure is available in the online journal.)

denoted as “two-flavor line” in Figure 1. Another constraint is
given by the implementation of the strange matter hypothesis
(Bodmer 1971; Witten 1984) as described in the introduction,
with E/A " 930 MeV for strange quark matter at ground
state (Farhi & Jaffe 1984). This condition results in the “three-
flavor line” in Figure 1 and gives a lower limit on the maximum
masses. Figure 1 also shows lines of constant maximum mass.
The three dotted lines enclosing the red shaded area represent
the mass of PSR J1614-2230 with its 1σ error (Demorest et al.
2010). The two-flavor and the three-flavor lines cross on the left
outside the plot range at a4 = 0.247, B1/4

eff = 102.24 MeV which
correspond to a maximum mass star with M = 3.36 M" and a
radius of 19 km. The Kepler line at low Beff represents a limit
for quark stars which can rotate with a Keplerian frequency of at
least 716 Hz (Hessels et al. 2006). Therefore, the green shaded
area is the allowed quark star parameter region with a maximum
mass of 2.54 M" at a4 ≈ 0.53 and B

1/4
eff ≈ 123.7MeV. However,

the Kepler line is obtained from a parameterization of Lattimer
& Prakash (2007) and gives a rough estimate when applied to
strange stars. For a more reliable Kepler limit, the presented
quark EoSs should be applied in general relativistic calculations
of rotating quark stars similar to the studies of Haensel et al.
(2009) or Lo & Lin (2011). From Figure 1, we see that for
a4 = 1 the two-flavor line requires Mmax # 1.92 M" which is
ruled out by the new mass limit, at least within its 1σ error. Thus
we find that a4 < 1, i.e., QCD corrections must be included to
ensure the compatibility of the model with observational data.

2.2. Color-superconducting Strange Matter Stars

At large densities, such as in compact star interiors, up, down,
and strange quarks are assumed to undergo pairing and form the
so-called CFL phase. We adopt the EoS from Alford et al. (2001)
which introduces the pairing energy ∆ as a new free parameter:

ΩCFL = 6
π2

∫ ν

0
dp p2(p − µ) +

3
π2

∫ ν

0
dp p2(

√
p2 + m2

s − µ
)

+ (1 − a4)
3µ4

4π2
− 3∆2µ2

π2
+ Beff, (2)

2



 

Color Flavor Locked phase (Color superconductivity) 
 

There are Cooper pairs between quarks of different flavor and 
color. 
 
We use  the bag model [G. Lugones & J. Horvath 2002 ] 

 

 

 

Ωfree includes the potential for free quarks: up, down, and strange. 

 

Where Δ is the superconducting gap, and B is the bag constant. 
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TABLE I. Coupling constants for the parametrizations GM1
[? ] and NL3 [? ]. Mmax is the maximum mass of a pure
hadronic star for matter composed by nucleons and electrons.

Set GM1 NL3

mσ (MeV) 512 508.194

mω (MeV) 783 782.501

mρ (MeV) 770 763

gσ 8.91 10.217

gω 10.61 12.868

gρ 8.196 8.948

b 0.002947 0.002055

c -0.001070 -0.002651

Mmax 2.32 2.73

∆2, the thermodynamic potential ΩCFL can be expressed
as [23]

ΩCFL = Ωfree −
3

π2
∆2µ2 +B, (2)

being Ωfree the thermodynamic potential of a state of
unpaired u, d and s quarks in which all them have a
common Fermi momentum ν, with ν chosen to minimize
Ωfree:

Ωfree =

∫ ν

0

6p2dp

π2
[p−µ]+

∫ ν

0

3p2dp

π2
[
√
p2 +m2

s−µ]. (3)

The binding energy of the diquark condensate is included
in the condensation term proportional to ∆2µ2 where the
chemical potential µ ≡ (µu + µd + µs)/3 is related to ν
through ν = 2µ− (µ2 +m2

s/3)
1/2, being ms the mass of

the strange quark. Confinement is introduced through a
phenomenological vacuum energy density or bag constant
B.
From the ΩCFL given above we can obtain the equation

of state to order m2
s [23]:

p =
ε

3
− 4B

3
+

3α µ2

π2
, (4)

where p is the pressure, ε is the mass-energy density, and
µ and α are given by

µ2 = −α+

[
α2 +

4

9
π2(ε−B)

]1/2
, (5)

α = −m2
s

6
+

2∆2

3
. (6)

For the oscillation equation (see Sec. III) we need the
adiabatic index γ = (ε + p)p−1dp/dε. From Eq. (4) we
have

dp

dε
=

1

3
+

6αµ

π2

dµ

dε
. (7)

The derivative dµ/dε can be calculated from Eq. (5):
dµ/dε = π2(9µ)−1[α2 + 4π2(ε−B)/9]−1/2. Thus, we
have

dp

dε
=

1

3
+

2α

3

(
1

µ2 + α

)
, (8)

which allows to write the adiabatic index γ as a function
of p or ε.

Since the values of B, ms and ∆ are not accurately
known we shall consider them as free parameters in the
equation of state. We emphasize that all the values of
B, ms and ∆ employed in this paper fall inside the sta-
bility windows presented in Fig. 2 of Ref. [23]; i.e. we
always obtain self-bound strange stars when integrating
the stellar structure equations. Additionally, the param-
eters satisfy the stability condition m2

s < 2µ∆ given in
Ref. [32].

In our calculations of the oscillation modes we shall
also employ the MIT equation of state for a gas of un-
paired massless quarks, i.e. ε = 3p+4B. Notice that un-
paired matter is the same that CFL matter with ∆ = 0
only if all the quark masses are zero. If ms is not zero,
the Fermi momenta of u, d and s quarks are different for
unpaired quark matter, but they are still the same for
CFL matter.

III. THE EQUATIONS FOR NON-RADIAL
FLUID OSCILLATIONS

In this work we employ the general relativistic pul-
sation equations within the Cowling approximation as
derived by McDermott, Van Horn and Scholl [9]. To ob-
tain these equations, fluid and space-time perturbations
are decomposed into spherical harmonics Y l

m(θ,φ) and a
sinusoidal time dependence exp(iωt) with frequency ω.
Within the relativistic Cowling approximation the per-
turbations in the metric are set to zero. The Lagrangian
fluid displacements that represent the infinitesimal oscil-
latory perturbations of the star are [9]:

δr = Re[r−2e−λ/2W (r)Y l
m(θ,φ)eiωt], (9)

δθ = Re[−r−2V (r)∂θY
l
m(θ,φ)eiωt], (10)

δφ = Re[−r−2 sin−2 θV (r)∂φY
l
m(θ,φ)eiωt], (11)

where W (r) and V (r) are the fluid perturbation func-
tions. The pulsation equations read [9]:

(1 + dp)
dZ1

dx
=

[
dp
γ

− 1− l

]
Z1

+

[
l(l + 1)

m

ω2r3
eλ/2 − dp

γβ

]
Z2, (12)

(1 + dp)
dZ2

dx
= eλ/2

[
ω2r3

m
+A+rβ

]
Z1

+

[
3− l − dm −A−e

λ/2r

]
Z2, (13)



How we set the parameters ? 
1)  We require non-strange quark matter to have binding energy      
      per baryon higher than that of the most stable atomic nucleus 56Fe  
      (Farhi & Jaffe 1984). 
 
 
2) We also implement the strange matter hypothesis (Bodmer 1971,  

    Witten 1984): 
 
 
We use set of parameters that allow masses greater than 2 solar 
masses in the light of recent observations. [Demorest  et al. 2010] 
 
 

 

3.2. MODELO DE QUARKS

A taxa de formação de gotas críticas, pode ser calculada através da expressão,

Γ ≈ T 4e−δΩc/T , (3.60)

o fator T 4 não afeta significativamente os resultados porque Γ é dominado pelo expoente dessa

equação. Tomando o logaritmo na eq. (3.60), podemos reescrevê-la como,

log10 Γ ≈ 4
lnT

ln 10
− δΩc

T ln 10
. (3.61)

Em nosso caso, Ωc é o trabalho necessário para formar uma gota de quarks com o raio crítico

da matéria hadrônica em bulk no ponto de transição,

δΩc ≡ −
4

3
πR3(PQ − PH

bulk) + 4πR2σ + 8πRζ. (3.62)

No Cap. 4 apresentamos os resultados da densidade de transição e das taxas de nucleação,

para diferentes tamanhos da gota, temperaturas e diferentes condições de neutrinos aprisiona-

dos.

3.2.3 A hipótese da matéria estranha

A hipótese de um gás de Fermi composto por quarks up (u), down (d) e strange (s) des-

confinados – que recebeu o nome de matéria estranha (SQM 7) – deve-se a Witten [72, 73] e a

alguns precursores importantes, tais como Bodmer, Terazawa, Chin & Kerman [73–75]. Eles

propuseram que a SQM poderia ser estável, se composta por uma grande quantidade de quarks

s, à pressão nula. A Fig. 3.3 representa uma ilustração simplificada dessa hipótese. Com

relação à estabilidade da matéria estranha, temos duas condições [76]:

• Condição 1 : Se assumirmos que a matéria estranha é estável, logo:

E =

(
ε

nB

)

SQM
≤ mn = 939MeV.

ou então a matéria estranha poderá decair pela emissão de partículas α.

• Condição 2 : Se assumirmos que o núcleo de Fe56 não pode ser convertido para a matéria

de quarks u e d, então:

E =

(
ε

nB

)

u, d
≥ mn = 939MeV,

7SQM: Strange Quark Matter.
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A hipótese de um gás de Fermi composto por quarks up (u), down (d) e strange (s) des-

confinados – que recebeu o nome de matéria estranha (SQM 7) – deve-se a Witten [72, 73] e a

alguns precursores importantes, tais como Bodmer, Terazawa, Chin & Kerman [73–75]. Eles

propuseram que a SQM poderia ser estável, se composta por uma grande quantidade de quarks

s, à pressão nula. A Fig. 3.3 representa uma ilustração simplificada dessa hipótese. Com

relação à estabilidade da matéria estranha, temos duas condições [76]:

• Condição 1 : Se assumirmos que a matéria estranha é estável, logo:

E =

(
ε

nB

)

SQM
≤ mn = 939MeV.

ou então a matéria estranha poderá decair pela emissão de partículas α.

• Condição 2 : Se assumirmos que o núcleo de Fe56 não pode ser convertido para a matéria

de quarks u e d, então:

E =

(
ε

nB

)

u, d
≥ mn = 939MeV,

7SQM: Strange Quark Matter.
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By using the Lagrangian of hadronic matter and the potentials for quark 
matter we can obtain the equation of state: P=P(ρ) 
 



3) EQUILIBRIUM MODEL 
We consider the following background metric: 

 

 

and the stress-energy tensor of a perfect fluid: 
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4) PERTURBED MODEL 
We consider the perturbed metric 

 

 

 

 

And obtain the perturbed Einstein’s tensor: 

 

We also consider perturbations in the fluid 

 

 

 

 

And obtain the perturbed stress-energy tensor: 
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Though a quark star may be either a light quark star made up of u and d quarks or a strange quark star composed
of a mixture of u, d and s quarks, we construct simple models by using the bag model EOS, which neglects the masses
of u and d quarks. This bag model EOS is characterized by three parameters: the strong interaction coupling constant
αc, the bag constant B and the mass ms of the s quark. The dependence of stellar properties on the bag constant is
much stronger than that on αc and ms [23]. In this paper we use the bag model EOS derived for a massless strange
quark,

P =
1

3
(ρ − 4B). (2.6)

The bag constant B is a positive energy density, which corresponds to latent heat. The stellar radius R is defined
as the position where the pressure is zero. At the surface, the density profile is discontinuous. Although the value of
the bag constant, which is a phenomenological parameter, should be determined by the underlying strong interaction
dynamics, it is difficult to determine this value from our present understanding of QCD. However, if strange quark
matter is the true ground state, the energy of this true ground state per particle would not be over the nucleon mass
939 MeV at baryon density for zero pressure matter. This constraint implies a maximum value of the bag constant
B as follows [24]:

B ≤ Bmax = 94.92

(

1 −
2αc

π

)

MeV fm−3. (2.7)

For definiteness, we use three values of the bag constant, B = 28.9, 56.0 and 94.92 MeV fm−3. Although B1/4
st = 145

MeV or Bst = 57.8 MeV fm−3 has been often used for the study of quark-gluon plasma so far, we adopt B = 56.0
MeV fm−3 to compare with the results in [18]. The other values of the bag constant are the maximum value for
αc = 0 and half the standard value Bst. We show the mass M of quark stars as a function of the central density ρc

for these three values of the bag constant in Fig. 1(a), the relations between M and R and between M and R∞ in
Fig. 1(b), and the relation between “average density” ρ̄ ≡ 3M/4πR3 and R∞ in Fig. 1(c). These figures are plotted
for 4B < ρc ≤ 5.0 × 1015 g/cm−3. The radiation radius may be determined from X-ray observations such as [5]. We
pay attention to the stars whose radiation radii are in the range of 3.8− 8.2 km. In this range of radiation radius, we
pick up three values, R∞ = 3.8, 6.0 and 8.2 km.

On the other hand, Nakamura argued that the mass of the compact star reported in [5] should be roughly 0.7M#

in order to account for its observed X-ray luminosity [6]. If we use a value smaller than Bmax, however, the mass of a
quark star whose radiation radius is in the range of 3.8 − 8.2 km is far below 0.7M# as seen in Fig. 1(b). Therefore
he pointed out the possibility of adopting the value B = 471.3 MeV fm−3, which is rather greater than Bmax. We
consider a quark-star mass of M = 0.7M# for this value of the bag constant to compare with other models. Also for
the case B = 471.3 MeV fm−3, we plot the relation between M and ρc in Fig. 1(a), the relations between M and R
and between M and R∞ in Fig. 1(b), and the relation between ρ̄ and R∞ in Fig. 1(c). In this case, each plot is for
4B < ρc ≤ 5.0 × 1016 g/cm−3. The properties of our quark-star models are tabulated in Table I.

III. NONRADIAL OSCILLATIONS OF QUARK STARS

A. Method

The QNMs are determined by solving the perturbation equations with appropriate boundary conditions. The metric
perturbation is given by

gµν = g(B)
µν + hµν , (3.1)

where g(B)
µν is the background metric of a spherically symmetric star (2.1). We have applied a formalism developed by

Lindblom and Detweiler [25] for relativistic nonradial stellar oscillations. In this formalism, hµν for polar perturbations
is described as

hµν =









rlĤe2Φ iωrl+1Ĥ1 0 0
iωrl+1Ĥ1 rlĤe2Λ 0 0

0 0 rl+2K̂ 0
0 0 0 rl+2K̂ sin2 θ









Y l
m eiωt, (3.2)
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where Ĥ, Ĥ1, and K̂ are perturbed metric functions with respect to r, and the components of the Lagrangian dis-
placement of fluid perturbations are expanded as

ξr =
rl

r
eΛŴY l

m eiωt, (3.3)

ξθ = −
rl

r2
eΛV̂

∂

∂θ
Y l

m eiωt, (3.4)

ξφ = −
rl

r2 sin2 θ
eΛV̂

∂

∂φ
Y l

m eiωt, (3.5)

where Ŵ and V̂ are functions of r.
Then the perturbation equations derived from Einstein equations are given by

dĤ1

dr
= −

1

r

[

l + 1 +
2m

r
e2Λ + 4πr2(P − ρ)e2Λ

]

Ĥ1

+
1

r
e2Λ

[

Ĥ + K̂ + 16π(P + ρ)V̂
]

, (3.6)

dK̂

dr
=

l(l + 1)

2r
Ĥ1 +

1

r
Ĥ −

(

l + 1

r
−

dΦ

dr

)

K̂ +
8π

r
(P + ρ)eΛŴ , (3.7)

dŴ

dr
= −

l + 1

r
Ŵ + reΛ

[

1

γP
e−ΦX̂ −

l(l + 1)

r2
V̂ −

1

2
Ĥ − K̂

]

, (3.8)

dX̂

dr
= −

l

r
X̂ + (P + ρ)eΦ

[

1

2

(

dΦ

dr
−

1

r

)

Ĥ −
1

2

(

ω2re−2Φ +
l(l + 1)

2r

)

Ĥ1

+

(

1

2r
−

3

2

dΦ

dr

)

K̂ −
l(l + 1)

r2

dΦ

dr
V̂

−
1

r

(

ω2e−2Φ+Λ + 4π(P + ρ)eΛ − r2

{

d

dr

(

1

r2
e−Λ dΦ

dr

)})

Ŵ

]

, (3.9)

[

1 −
3m

r
−

l(l + 1)

2
− 4πr2P

]

Ĥ − 8πr2e−ΦX̂

+r2e−2Λ

[

ω2e−2Φ −
l(l + 1)

2r

dΦ

dr

]

Ĥ1

−

[

1 + ω2r2e−2Φ −
l(l + 1)

2
−

(

r − 3m − 4πr3P
) dΦ

dr

]

K̂ = 0, (3.10)

V̂ =
e2Φ

ω2(P + ρ)

[

e−ΦX̂ +
1

r

dP

dr
e−ΛŴ +

1

2
(P + ρ)Ĥ

]

. (3.11)

In deriving the above equations for perturbations, we assume a perfect fluid. Rigorously speaking, it will not be valid
because of the existence of matter viscosity. However, little is known about the viscosity of cold quark matter. Here
we omit the viscosity as a possible approximation. In Eq. (3.8), γ is the adiabatic index of the unperturbed stellar
model, which is calculated as

γ =
ρ + P

P

dP

dρ
=

1

3

ρ + P

P
, (3.12)

where the bag model EOS (2.6) is used in the second equality. The set of Eqs. (3.6) − (3.9) is a set of differential
equations connecting the variables Ĥ1, K̂, Ŵ and X̂, and Eqs. (3.10) and (3.11) are the algebraic equations for the
variables Ĥ and V̂ . The perturbation equations outside the star are described by the Zerilli equations. By imposing
boundary conditions such that perturbative variables are regular at the center of the star, the Lagrangian perturbation
of pressure vanishes at the stellar surface, and the gravitational wave is only an outgoing one at infinity, one can reduce
this to an eigenvalue problem. The boundary condition at the stellar surface is X̂ = 0, because X̂ ≡ −r−leΦ∆P ,
where ∆P is Lagrangian perturbation of pressure. Furthermore, we set the term e−ΦX̂/γP in Eq. (3.8) to zero at the
stellar surface, because γP = 4B/3 at r = R. For the treatment of the boundary condition at infinity, we adopt the
method of continued-fraction expansion proposed by Leaver [26]. The details of the determination of quasi-normal
frequencies are given in [19].

Gµν =Gµν

(B)
+δGµν

Tµν = Tµν
(B)
+δTµν



Gµν =Gµν

(B)
+δGµν

Tµν = Tµν
(B)
+δTµν

Gµν = Tµν δGµν = δTµν

We put the perturbed quantities into the Einstein’s equations and 
obtain the perturbed equations: 

 

 

 

 

We will consider the Cowling approximation: If the 
oscillations are present near the surface, the gravitational 
field is weakly perturbed, and we can set to zero the metric 
perturbations [MacDermott 1983].  
Then, we can obtain the oscillation equations [Sotani et al. 2011] 

 

 

 

The coefficients are determined from the TOV equations 
(equilibrium model) 
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Thus, from Eqs. (3.4) and (3.7), one can obtain the following simple equation system for the fluid perturbations;

W ′ =
dρ

dP

[

ω2r2eΛ−2ΦV + Φ′W
]

− #(#+ 1)eΛV, (3.8)

V ′ = 2Φ′V − eΛ
W

r2
. (3.9)

In order to solve this equation system, we have to impose appropriate boundary conditions at the stellar center
(r = 0) and at the stellar surface (r = R). With these boundary conditions, the problem to solve becomes an eigenvalue
problem for the parameter ω. From the above equation system, one can find the behavior of W and V in the vicinity
of stellar center as W (r) = Cr!+1+O(r!+3) and V (r) = −Cr!/#+O(r!+2), where C is an arbitrary constant. On the
other hand, the boundary condition at the stellar surface is the vanishing of the Lagrangian perturbation of pressure,
i.e., ∆P = 0. Since ∆P could be expressed that ∆P = γP∆n/n from Eq. (3.5), with the help of Eqs. (3.6) and
(3.8), the condition of ∆P = 0 becomes as

ω2r2eΛ−2ΦV + Φ′W = 0. (3.10)

Furthermore, if one would consider the stellar models with density discontinuity, one has to prepare the additional
junction condition at the surface of discontinuity, which are the continuous condition for W and ∆P [7]. These
junction conditions can be rewritten with the variables W and V as

W+ = W−, (3.11)

V+ =
e2Φ

ω2Rg
2

{

ρ− + P

ρ+ + P

[

ω2Rg
2e−2ΦV− + e−ΛΦ′W−

]

− e−ΛΦ′W+

}

, (3.12)

where Rg denotes the position of the density discontinuity, and W−, V−, and ρ− are the vales of W , V , and ρ at
r = Rg − 0 while W+, V+, and ρ+ are the values of W , V , and ρ at r = Rg + 0, respectively.

IV. OSCILLATION SPECTRA

In this section we examine the stellar oscillations on the stellar models shown in Sec. II. Especially, we focus on the
stellar models whose mass is in the range of 0.5M# ≤ M ≤ Mmax and at 0.1M# intervals, where Mmax is maximum
mass for each EOS. Namely, the masses of the stellar models we adopt in this article are 0.5 ≤ M/M# ≤ 1.3 for hyperon
EOS, 0.5 ≤ M/M# ≤ 1.8 for nucleon EOS, and 0.5 ≤ M/M# ≤ 1.4 for the other EOSs. As mentioned the above,
the stellar models with Maxwell EOS have the density discontinuity, if the central density is larger than 8.816× 1014

g/cm3. That is, for Maxwell EOS, the stellar models with 0.7 ≤ M/M# ≤ 1.4 have the density discontinuity, while
those with M/M# = 0.5 and 0.6 do not have the density discontinuity and such stellar models are same as those with
hyperon EOS (see Fig. 2).
When neutron stars oscillate, many kinds of gravitational waves are radiated. If the stars are spherically symmetric

and without density discontinuity inside the star, which might be the simplest model, the fundamental (f), pressure
(p), and spacetime (w) modes are excited, where f and p modes are gravitational waves related to the fluid oscillations
while w modes correspond to the oscillations of spacetime itself. If the stars are spherically symmetric and with density
discontinuity, the additional oscillation modes, i.e., the g modes, are excited as well as f , p, and w modes. The g
modes are also gravitational waves associated with the fluid oscillations. In this article, we will see qualitatively the
gravitational waves related to the fluid oscillations because the Cowling approximation is adopted in our analysis.
Thus, as shown in Fig. 3, the stellar models with the adopted EOS except for Maxwell EOS have f and p mode,
while those with Maxwell EOS, whose masses are more than 0.7M#, have f , p, and g modes.
Before discussing the f and p modes, we pay attention to the g mode for the stellar models with Maxwell EOS. As

noted before, g mode is excited due to the existence of density discontinuity. Therefore, one could know the existence
of density discontinuity inside the neutron stars, if the g mode gravitational waves will be observed. Actually, since
the typical frequency of g mode is in the range from a few hundred Hz up to kHz, such gravitational waves could be
observed by using the ground-based gravitational waves detectors. From Fig. 3, one can observe that the frequency
of g mode is almost independent from the stellar mass, which is around 1.73 Hz. However, we find that g mode
frequency can be expressed well as a function of stellar compactness M/R (see Fig. 4), such as

ωM = 0.3130

(

M

R

)

+ 0.0103. (4.1)



Boundary conditions:  
 
At the center we have the regularity conditions 

 
 

 

 

At the surface the lagrangian perturbation in the pressure is zero 
Δp=0 

 
 

 

 

 

 
 

ω 2r2eΛ−2ΦV +Φ'W = 0

W (r) =Crl+1 +O(rl+3)

V (r) = −Crl / l +O(rl+2 )



 
5) NUMERICAL METHOD 

 
1)  TOV equations are solved by a Runge Kutta method (integration until 

p is zero at the surface) 

2)  Oscillations equations are solved by a shooting  method, which  
consists in: 

a)  Choose a trial frequency, use boundary conditions at r = 0. 

b)   Numerical integrate the Oscillations equations from the   

      center to the surface. 

c)   Check if the boundary conditions at the surface are satisfied, if not,  

      take again a new trial frequency. If yes we have calculated the  

      frequency. 

 

 

 

 
 

 

 

 

 
 

 



6) RESULTS 
f-mode (fundamental 
 mode) 
 
 
 
 
 
 
 
 
1)  Large maximum masses for small B and large Δ. 
2)  For CFL stars  ff  decreases as Δ is increased. 
3)  CFL stars have ff ~ 2 – 3 Khz.  
2) Profiles for hadron stars and quark stars are qualitatively very different. 
3) For hadron stars ff increases roughly linearly with the mass. 
4) In contrast ff doesn’t change considerably with the mass in the case of quark 
stars. 
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being

x ≡ ln(r/p), (14)

Z1 ≡ W

r3

(
r

R

)2−l

, (15)

Z2 ≡ −ω
2rV

m(r)

(
r

R

)2−l

, (16)

dm ≡ d lnm

d ln r
, (17)

dp ≡ −d ln p

d ln r
, (18)

β ≡ eν+λ/2

(
1 +

4πr3p

m

)
, (19)

A± ≡ e−λ/2

[
1

(ε+ p)

d

dr
(ε+ p)

− 1

γp

dp

dr

(
1± γp

(ε+ p)

)]
. (20)

In the above formulae, m is the mass inside radius r and
we adopt G = c = 1. The metric functions ν and λ
are defined through the line element ds2 = eν(r)dt2 −
eλ(r)dr2 − r2(dθ2 + sin2 θdφ2).

To close the system we employ the following bound-
ary conditions [9]. The condition of regularity at r = 0
requires that

Z1 −
lm

ω2r3
Z2 = 0 at r = 0. (21)

At the surface of the star the Lagrangian perturbation in
the pressure must be zero, leading to

Z2 − βZ1 = 0 at r = R. (22)

In order to numerically solve the oscillation equations
we proceed as follows. First, we integrate the Tolman-
Oppenheimer-Volkoff stellar structure equations [33] for
each set of parameters of the equation of state (B, ms

and ∆) in order to obtain the coefficients of the oscil-
lation equations for a given central pressure. Then we
solve the oscillation equations by means of the shooting
method: we start the numerical integration of Eqs. (12)
and (13) for a trial value of ω2 and a given set of val-
ues of Z1(r = 0) and Z2(r = 0) such that the boundary
condition at the centre is fulfilled. The equations are
integrated outwards trying to match the boundary con-
dition at the star’s surface. After each integration, the
trial value of ω2 is corrected through a Newton-Raphson
iteration scheme in order to improve the matching of the
surface boundary condition until the desired precision is
achieved. The discrete values of ω for which Eq. (22) is
satisfied are the eigenfrequencies of the star. Our code
was able to reproduce the results of Lindblom and Splin-
ter [12].
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FIG. 1. The frequency ff = ωf/(2π) of the f -mode as a function
of the mass M and the gravitational redshift z of the star. For CFL
strange stars, labels indicate the values of B in MeV fm−3 and ∆
in MeV. For comparison we show the results for hadronic stars
described by the Bethe-Johnson (BJ) equation of state [33] and
for strange stars without color superconductivity (B60 unpaired).
Notice that the curves for strange stars move downwards when ∆ is
increased at constant B and move upwards when B is increased at
constant ∆. In order to be consistent with the mass of PSR J1614-
2230 (M = 1.97±0.04M" [35]) we consider in the lower panel only
those models for CFL strange stars that have a maximum mass
larger than ≈ 2M".

IV. RESULTS

The polar quasi-normal modes can be classified accord-
ing to the scheme introduced by Cowling for Newtonian
objects in which each family of modes is directly asso-
ciated with the restoring force which prevails when a
fluid element is displaced from its equilibrium position
[8]. The most important modes for gravitational wave
emission are the (pressure) p-modes, the (fundamental)
f -mode, and the (gravity) g-modes. The frequencies of g-
modes are lower than those of p-modes, and the two sets
are separated by the frequency of the f -mode [7]. These
modes are called fluid modes to distinguish them from
e.g. purely gravitational modes (w-modes) for which the
fluid motion is barely excited. Since the metric perturba-

Blue lines for CFL stars,  
Green lines for Bag 
 model with QCD  
Corrections, black lines 
 for hadronic stars. 

f =ω / 2π
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1)  Again there is a large difference between results for hadron and 
quark stars. 

2)  For a hadron stars the frequencies of the p1 modes are typically in 
the range 4 – 10 khz. 

3)  For quark stars frequencies  are in the same range for massive 
stars, but they increase significantly for low mass stars. 
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tions are set to zero within the Cowling approximation,
only f , p and g modes can be studied through the equa-
tions of the previous section. However, in chemically
homogeneous, zero temperature (and hence isentropic)
stars, all the g-modes are zero frequency [34] and there-
fore we shall not investigate them in the present paper.
We emphasize that, although the Cowling approximation
does not allow to determine the damping time of a per-
turbation, it allows to obtain the oscillation frequencies
with reasonable accuracy; typically, with an error smaller
than 20 % [13].
In Figs. 1−3 we show our results for quadrupole os-

cillations (l = 2). The mass of the strange quark has
been set to ms = 150 MeV in all calculations, and we
spanned all the values of the parameters B and ∆ that
give self-bound (strange) stars. In general, a large max-
imum mass for compact stars can be achieved for small
B and large ∆ as can be seen in the upper panel of Fig.
1 (for more details on the maximum mass see [24, 25]).
In this work, we shall concentrate on parametrizations
of the equation of state that result in a maximum mass
larger than the mass of the pulsar PSR J1614-2230 with
M = 1.97± 0.04M! [35].
In Fig. 1 we show our results for the f -mode. It is

apparent that the profiles for hadron and quark stars
are qualitatively very different. For hadron stars (rep-
resented here by the BJ EoS) ff increases roughly lin-
early with the mass of the star. The result is similar for
other hadron equations of state as can be seen in the re-
cent work by Sotani et al. [31]. In contrast, ff doesn’t
change considerably with M in the case of strange stars.
The curves are even more horizontal in the lower panel,
where we show ff as a function of the gravitational red-
shift z at the surface of the star. It is easy to see that the
curves shift downwards when ∆ is increased at constant
B and shift upwards when B is increased at constant ∆.
Following Andersson and Kokkotas [36], we shall look

for a simple analytic fitting of the frequency of the fun-
damental mode. In the case of hadron stars, a rather
universal relation holds for all EoS [36]: ωf (kHz) ≈
0.78 + 1.635(M/1.4M!)1/2(R/10km)−3/2. In the case of
strange stars, we obtain a good quadratic fitting of ff as
a function of the redshift z

ff (kHz) ≈ a+ b(z − c)2, (23)

where a, b and c are constants that depend on the pa-
rameters B and ∆ of the equation of state (see Table II).
This expression reproduces the numerical results shown
in the lower panel of Fig. 1 with an error smaller than
2%.
In Figs. 2 and 3 we show our results for the first

and second p-modes. Again, there is a large difference
between the results for hadron and quark stars. For a
hadron star the frequencies of the p1 and p2 modes are
typically in the range 4− 10 kHz [31]. For strange quark
stars, the frequencies are in the same range for the most
massive stars, but they increase significantly for low mass
stars. We have verified that the curves shift upwards as
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FIG. 2. Frequencies of the first pressure mode for parametriza-
tions of the EoS with maximum mass above 2 M!.

the bag constant B is increased. However, we shall re-
strict ourselves to low values of B (∼ 60− 70 MeVfm−3)
and large values of ∆ (>∼ 50 MeV) because we are inter-
ested in stars resulting maximum masses above the mass
of the pulsar PSR J1614-2230 with ≈ 2M!. For fixed
B and a given mass M , the frequency of the modes in-
crease with the pairing gap ∆. However, as a function
of the redshift z, curves for different ∆ coincide within a
10%. Thus, we calculate the following unified power law
fittings for the frequencies fp1 and fp2:

fp1(kHz) ≈ 4.24z−0.6, (24)

fp2(kHz) ≈ 6.27z−0.63. (25)

B ∆ a b c

[MeVfm−3] [MeV]

60 unpaired 2.3597 3.2203 0.2194

60 75 2.1454 2.8134 0.2528

60 100 1.9348 2.0489 0.3055

60 150 1.6415 1.0685 0.4733

TABLE II. Parameters of the analytic fitting for the frequency
of the fundamental mode given in Eq. (23).



7) CONCLUSIONS 
 
1)  For quark stars the frequency of the fundamental mode has a small 

varitation with the mass. 
 
2)  For CFL stars  ff  decreases as Δ is increased. 

3)  We have found  ff  ~ 2 – 3 Khz for parameters of the EoS that result 
stars with a maximum mass above 2 solar masses. 

4)  As in the case of ff , the p1 modes also are very different to the 
corresponding modes of hadron stars. 

5)  Cowling approximations is a good tool to study qualitatively  the effect 
of the EoS in the frequencies of the non-radial modes. 
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