
HYBRID STARS IN THE LIGHT OF THE MASSIVE PULSARPSR J1614-2230

César H. Lenzi & Gerḿan Lugones
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Abstract

We perform a systematic study of hybrid star configurations using sev-
eral parametrizations of a relativistic mean-field hadronic EoS and the
NJL model for three-flavor quark matter. For the hadronic phase we
use the stiff GM1 and TM1 parametrizations, as well as the very stiff
NL3 model. In the NJL Lagrangian we include scalar, vector and ’t
Hooft interactions. The vector coupling constantgv is treated as a free
parameter. We also consider that there is a split between thedeconfine-
ment and the chiral phase transitions which is controlled bychanging
the conventional value of the vacuum pressure−Ω0 in the NJL ther-
modynamic potential by−(Ω0+ δΩ0), beingδΩ0 a free parameter. We
find that, as we increase the value ofδΩ0, hybrid stars have a larger
maximum mass but are less stable, i.e. hybrid configurationsare sta-
ble within a smaller range of central densities. For large enoughδΩ0,
stable hybrid configurations are not possible at all. The effect of in-
creasing the coupling constantgv is very similar. We show that stable
hybrid configurations with a maximum mass larger than the observed
mass of the pulsar PSR J1614-2230 are possible for a large region of
the parameter space ofgv andδΩ0 provided the hadronic equation of
state contains nucleons only. When the baryon octet is included in the
hadronic phase, only a very small region of the parameter space allows
to explain the mass of PSR J1614-2230. We compare our resultswith
previous calculations of hybrid stars within the NJL model.We show
that it is possible to obtain stable hybrid configurations also in the case
δΩ0 = 0 that corresponds to the conventional NJL model for which the
pressure and density vanish at zero temperature and chemical potential.

The model

To describe the quark matter phase we use the SU(3) NJL model with
scalar-pseudoscalar, isoscalar-vector and ’t Hooft six fermion interac-
tion. The Lagrangian density of the model is:

LQ = ψ̄(iγµ∂
µ − m̂)ψ

+ gs

8
∑

a=0

[(ψ̄λaψ)2 + (ψ̄iγ5λ
aψ)2]

− gv

8
∑

a=0

[(ψ̄γµλ
aψ)2 + (ψ̄γ5γµλ

a ψ)2]

+ gt{det[ψ̄(1 + γ5)ψ] + det[ψ̄(1− γ5)ψ]}, (1)

whereψ = (u, d, s) denotes the quark fields,λa(0 ≤ a ≤ 8) are
the U(3) flavour matrices,̂m = diag(mu,md,ms) is the quark current
mass, andgs, gv andgt are coupling constants. The mean-field ther-
modynamic potential densityΩ for a given baryon chemical potential
µ atT = 0, is given by

Ω = − ηNc
∑

i

∫ Λ

kFi

p2 dp

2π2

√

p2 +M2
i + 2gs

∑

i

〈ψ̄ψ〉2i

− 2gv
∑

i

〈ψ†ψ〉2i + 4gt〈ūu〉〈d̄d〉〈s̄s〉

− ηNc
∑

i

µi

∫ kFi

0

p2 dp

2π2
− Ω0, (2)

where the sum is over the quark flavor(i = u, d, s), the constants
η = 2 andNc = 3 are the spin and color degeneracies, andΛ is a
regularization ultraviolet cutoff to avoid divergences inthe medium in-
tegrals. The Fermi moment of the particlei is given bykFi = θ(µ∗i −

Mi)
√

(µ∗2i −M2
i ), whereµ∗i is the quark chemical potential modified

by the vectorial interaction, i.e.µ∗u,d,s = µu,d,s − 4gv〈ψ
†ψ〉u,d,s.

The conventional procedure for fixing theΩ0 term in Eq. (2) is to
assume that the grand thermodynamic potentialΩ must vanish at zeroµ
andT . Nevertheless, this prescription is no more than an arbitrary way
to uniquely determine the EoS of the NJL model without any further
assumptions [1]. In view of this, [2] adopt a different strategy. They
fix a bag constant for the hadron-quark deconfinement to occurat the
same chemical potential as the chiral phase transition. This method
leads to a significant change in the EoS with respect to the conventional
procedure. Differently, we may explore the above possibility of having
chiral restoration and deconfinement occurring at different densities.
To this end, we shall substituteΩ0 in Eq. (2) by the new valueΩ0+δΩ0,
whereδΩ0 is a free parameter:

Ω0 −→ Ω0 + δΩ0 in Eq. (2). (3)

With this change, the thermodynamic potentialΩ can be non-vanishing
at zeroµ andT , and theµ of the deconfinement transition can be tuned.
In order to illustrate the dependence of the EoS on the new parame-
ter δΩ0 we depict in Fig. 1 the pressure as a function of the chemical
potential for different values ofδΩ0 and the pressure of the deconfine-
ment transitionPpht as a function ofδΩ0. Notice that a small change
in the value ofδΩ0 may result in a significant modification of the phase
transition density, and consequently, in a very different hybrid EoS.
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Fig. 1: (a) Pressure as a function of the chemical potential for different values of the parameter

δΩ0. (b) Pressure of the deconfinement phase transition as a function of δΩ0 for different values of

the coupling constantgv. Notice that a small change inδΩ0 can produce a significant change in the

pressure of the phase transition.

Results

We have solved the Tolman-Oppenheimer-Volkoff equations for spher-
ically symmetric and static stars in order to investigate the influence of
gv andδΩ0 on the maximum mass of hybrid stars. In Figs. 2 and 3 we
show the EoS for some specific parametrizations and the correspond-
ing stellar configurations in a diagram of massM versus central energy
densityǫc. The plateaus represent the hadron-quark phase transitionas
a consequence of a first order Maxwell construction.
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Fig. 2: (a) Pressure as a function of the baryon number density in units of the nuclear saturation

densityρ0 (we assumedρ0 = 0.17 fm−3). (b) Mass of hybrid stars as a function of the central

mass-energy densityǫc. We useδΩ0 = 0 and different values ofgv.
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Fig. 3: Same as Fig. 2 but adoptinggv/gs = 0.2 and different values ofδΩ0 (labels forδΩ0 are in

MeV fm−3).

In Fig. 4 we have represented the maximum mass of hybrid starsfor
different parametrizations of the NJL model (more deals seethe label
of Figure). An interesting feature of Fig. 4, is that large masses are
situated on the right-upper corner but stable configurations are located
on the left-lower corner of the figure (or left side of the figure in the
case of NL3). This clearly illustrates the difficulty of obtaining stable
hybrid stars with arbitrarily large masses. Concerning theeffect of the
hadronic model we see that stable hybrid stars have higher values of
the maximum mass for the stiffer hadronic EoS.
The observed mass of PSR J1614-2230 can be explained by parameters
within the large region located between the red dashed line and the
solid black line in each panel of Fig. 4. However, a hypothetical future
observation of a neutron star with a mass a∼ 10% larger than the mass
of PSR J1614-2230 will be hard to explain within hybrid star models
using the GM1 and TM1 EoS (see panels (a) and (b) of Fig. 4) and will
require a very stiff hadronic model such as NL3.
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Fig. 4: Background colors represent the maximum mass of hybrid stars for different parametrizations

of the NJL model (i.e. different values ofgv andδΩ0). In each panel we use a different hadronic

EoS (without hyperons): (a) GM1, (b) TM1 and (c) NL3. Notice that the color scale is different

for each panel. The solid contour lines indicate specific values of the maximum mass. The black

solid line represents the boundary between parametrizations that allow for stable hybrid stars and

parametrizations that do not. The red dashed line indicatesthe value1.97M⊙ corresponding to the

observed mass of PSR J1614-2230 [3]. The region between the red dashed line and the solid black

line allows to explain the mass of PSR J1614-2230.

The effect of hyperons is shown in Fig. 5 where we consider theNL3
parametrization with the inclusion of the baryon octet. Compared with
the case without hyperons, the maximum mass values are altered by a
few percent.
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Fig. 5: Same as panel (c) of Fig. 4 but for the NL3 model with hyperons. Hybrid stars are not

possible for the set of parameters within the white region. Only a very small region near the upper-left

corner of the colored region allows to explain the mass of PSRJ1614-2230.
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