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ABSTRACT
The discovery of extrasolar planets located in the vicinity of mean-motion commensurabilities
has opened a new arena for the study of resonance capture and its possible role in the dynamical
evolution and long-term stability of planetary systems. Contrary to our own Solar System, many
of these planets have highly eccentric orbits (∼0.1–0.6), making the use of usual analytical
perturbative models very limited. Even so, several attempts have been made to apply classical
expansions of the resonant Hamiltonian to these cases, leading to results which are, at best,
extrapolations of the low-eccentricity resonant structure, and not necessarily precise.

In this paper we present a new analytical expansion for the Hamiltonian of the planetary
three-body problem which does not suffer these restrictions, and is even valid for crossing
orbits. The only limitation is its applicability to planar motions. The resulting model can be
applied to resonant and non-resonant configurations alike. We show examples of this expansion
in different resonances and we compare the results with numerical determinations of the exact
Hamiltonian.

Finally, we apply the developed model to the case of two planets in the 2/1 mean-motion
commensurability (such as the Gliese 876 system), and we analyse its periodic orbits and
general structure of the resonant phase space at low and high eccentricities.

Key words: methods: analytical – celestial mechanics – planets and satellites: general –
planetary systems.

1 I N T RO D U C T I O N

The discovery of extrasolar planets in mean-motion commensura-
bilities has opened a whole new arena for the study of the planetary
three-body problem. Among others, we can mention the search for
equilibrium solutions, the study of mechanisms of resonance trap-
ping, as well as the existence of stable and chaotic regions of the
phase space for different values of the planetary masses and initial
conditions. Thus, many of the techniques and models derived for
the study of our own Solar System are now being modified and ap-
plied to new scenarios and new objects. The aim, however, remains
the same: to analyse what role (if any) resonances could play in the
origin and stability of the observed configuration of the planetary
systems.

Marcy et al. (2001) discovered that the two planets orbiting Gliese
876 are locked in a 2/1 mean-motion resonance, and they suggested
that this commensurability may in fact be responsible for the orbital
stability of the system. Numerical simulations seem to indicate that
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these bodies are actually trapped in what celestial mechanicians call
a ‘corotation point’. Unlike the term ‘corotation resonance’ widely
used in the context of planet–disc interactions, a corotation point is a
stationary solution of the averaged resonant system. In other words,
the bodies exhibit a simultaneous libration of the resonant angle and
an alignment of their major axes (Laughlin & Chambers 2001; Lee
& Peale 2002). Another extrasolar planetary system, HD 82943, also
seems to have two planets in a 2/1 commensurability relation (Butler
et al. 2002), although in this case it is unclear whether the observed
motion is also a corotation or a simple libration of the resonant angle.
Finally, there is evidence that the second body recently discovered
in 47 Uma (Fischer et al. 2002) may be close to the 5/2 resonance
with 47 Uma-b.

Several studies have been performed in the past couple of years on
the origin and stability of these resonant systems. Among these, we
can mention Ford, Havlikova & Rasio (2001), Murray, Paskowitz &
Holman (2002), Hadjidemetriou (2002), Lee & Peale (2002), and
others. Several of these have the aim of finding initial conditions and
masses that yield stable solutions. Because the observational data
usually do not yield explicit values for the masses, these tests are
very important in determining upper bounds for these parameters,
as well as indications for the inclination of the orbital plane of the
planetary system.
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Hadjidemetriou (2002) studied the stability of numerically gener-
ated families of periodic orbits in the planar-elliptic 2/1 resonance,
and applied the results to both the Gliese 876 and the HD 82943
systems. He found that, in such a commensurability, all solutions
are unstable if: (i) the mass of the outer planet is smaller than the
mass of the inner body, or (ii) the eccentricity of the outer body is
larger than that of the inner planet. In particular, his results indicate
that both observed planetary systems are close to stable periodic
solutions and thus seem to be dynamically stable.

Although most of the works have been numerical in nature, there
has also been a recent attempt to develop analytical models for these
systems. Among the first, Murray et al. (2002) analysed the pro-
cess of resonance capture in a scenario where both planets lose en-
ergy and angular momentum due to unspecified external dissipative
forces. They have shown that in certain cases the inward migration
of the bodies can lead to a substantial increase in their eccentric-
ities, yielding values of the same order as those observed in the
real systems. The analytical model used was based on a Laplacian
type expansion of the resonant Hamiltonian (see Holman & Murray
1996), although many of their results should be independent of the
particular expression adopted for this function.

A more detailed model was recently developed by Lee & Peale
(2002), who presented a very complete study on the capture of
these planets into the resonance by the inward migration due to
interaction with a gaseous or planetesimal disc. This capture may
not only explain the present corotation configuration, but also the
large eccentricity shown by both planets. Once again, the model was
based on a Laplacian expansion of the disturbing function, truncated
at third order in the eccentricities. The resulting equations were then
used to discuss the existence and locations of equilibrium solutions
in the averaged (resonant) phase space of the system.

In both these works, the analytical model was not fundamental
to their results and was used only to obtain qualitative information.
However, it is important to keep in mind that, for the 2/1 resonance,
the Laplace expansion is not convergent for eccentricities above
∼0.17 (see Ferraz-Mello 1994), and low-order truncated expres-
sions yield quantitatively imprecise results much sooner. This limit
may not be significant in the case of our own Solar System where
the planets move in quasi-circular orbits, but the same does not hold
for extrasolar systems. In the case of Gliese 876, the eccentricities
of the planets are approximately 0.12 and 0.27. For HD 82943 it
is even worse, as these values are of the order of 0.41 and 0.54.
So, for both these resonant pairs, the adopted analytical model is
not recommended and a new expansion must be used. In fact, in
many cases even truncated classical models may lead to incorrect
qualitative results. It is well known (see Beaugé 1994) that low-
order expansions may predict a structure for the phase space (such
as equilibrium solutions or stability index) which do not correspond
to the real system.

The aim of the present work is precisely to develop an expan-
sion of the Hamiltonian of the planetary three-body problem which
does not have these limitations and can be applied to the case of
high-eccentricity orbits. It is based on the so-called global expan-
sion of the disturbing function (Beaugé 1996), originally developed
for the restricted three-body problem with quasi-circular perturbers.
Here we present a variation of this function which contains several
improvements, including a much more simplified method for the
calculation of the coefficients. The resulting expansion can be ap-
plied to any generic mean-motion commensurability or even to the
case of non-resonant orbits. In this paper, the expansion will be re-
stricted to planar motions, although an extension to the spatial case
will be presented in the near future.

This paper is divided as follows. In Section 2 we introduce the
dynamical variables of the system and sketch the generic form of the
Hamiltonian function. In Section 3 we present the expansion of the
disturbing function for the general three-body problem. The case of
a generic mean-motion resonance for both planets is discussed in
Section 4, together with some comparisons with numerical calcula-
tions. In Section 5 we apply the resulting model to the case of the
2/1 resonance, and we analyse the results. Finally, discussions and
future applications of the model are approached in Section 6.

2 T H E H A M I LTO N I A N I N
P O I N C A R É VA R I A B L E S

Suppose three bodies of finite mass M0, m1 and m2 orbiting their
common centre of mass, with M0 � m1, m2 and m1, m2 > 0. M0

is to be the star of our system, and mi the planets. Of course this
is just an example, and the same dynamical system could be said
to represent the problem of two massive satellites orbiting a planet.
However, as we primarily apply the model to extrasolar planetary
systems, we use the first physical scenario throughout this work.

We define the following set of canonical variables:

λi ; Li = m ′
i
√

µi ai

�i ; Gi − Li = −Li

(
1 −

√
1 − e2

i

)
�i ; Hi − Gi = −Li

√
1 − e2

i (1 − cos Ii )

(1)

where ai, ei, I i, λi , � i and �i are the orbital elements of the ith
planet (i = 1, 2), µi = κ2 (M0 + mi), κ is the Gaussian gravitational
constant, and m ′

i is a reduced mass given by

m ′
i = mi M0

mi + M0
. (2)

These are the so-called Poincaré variables, and correspond to a vari-
ant of the modified Delaunay canonical set (see Laskar 1991). The
Hamiltonian F of the system can be expressed as a sum of two terms

F = F0 + F1 (3)

where the first corresponds to the two-body contribution, and is
given by

F0 = −
2∑

i=1

µ2
i m ′3

i

2L2
i

. (4)

The second term, F1, is the disturbing function of the problem.
According to Laskar (1991), it can be expressed as

F1 = −κ2m1m2
1

�
+ T1, (5)

where � is the instantaneous distance between both planets and T 1 is
the indirect part of the potential function. In terms of the heliocentric
Cartesian coordinates (xi, yi, zi) of each mass, up to the first order
in the masses this latter function has the form:

T1 = m1m2

M0
(ẋ1 ẋ2 + ẏ1 ẏ2 + ż1 ż2). (6)

Here ẋi denotes the temporal derivative of xi and, obviously, the
same notation holds for the remaining coordinates. The reader is
referred to Laskar (1991) and Laskar & Robutel (1995) for further
details.

The Hamiltonian of the planetary version of the three-body prob-
lem has two main differences with respect to the restricted case: (i) a
factor proportional to the mass in the unperturbed contribution, and
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(ii) a different aspect for the indirect part of the disturbing function,
which now depends on the velocity components and not on the co-
ordinates. This second modification is very significant and implies
that the expansions of both the direct and indirect terms cannot be
unified in a single expression.

3 E X PA N S I O N O F T H E
D I S T U R B I N G F U N C T I O N

As mentioned in the introduction, we wish to develop an expres-
sion for the Hamiltonian F which is valid in the case where one
or both of the planets may exhibit high eccentricities, and possibly
even have overlapping orbits. In such configurations, classical ex-
pansions such as Laplace (1799) or Kaula (1962) are not adequate;
see also Duriez (1988) and Ellis & Murray (2001) for more recent
variations. For eccentricities below the apocentric collision point,
these series are either divergent, as in the case of Laplace expansion
above the Sudmann curve (see Ferraz-Mello 1994) or they converge
very slowly to the point of needing literally millions of terms to
reproduce the exact function with even moderate precision. For ec-
centricities above the collision point, all these classical expansions
are useless.

A few years ago, Beaugé (1996) presented a new ‘global’ expan-
sion of the disturbing function which did not have these limitations.
In principle, it converges (although conditionally) in all points of
the phase space not including the singularities associated with col-
lisions between both bodies. The rate of convergence, and thus the
number of terms necessary for a given precision of the model, does
not depend explicitly on the eccentricities of the bodies or the an-
gular variables chosen as initial conditions. In fact, it is mainly a
function of the value of the disturbing function itself. Thus, initial
conditions for which the value of F1 is relatively small (such as in
the vicinity of a corotation point, or very far from the perturber) need
only a few terms in order to reproduce it adequately. On the other
hand, initial conditions close to the collision point (thus yielding
very high values of F1) need a large number of terms.

Although this expansion proved to be formally very simple, it
had very limited applicability to concrete problems, and was in fact
more interesting in an academic sense than from the practitioner’s
point of view. This was due to two reasons. (i) Because the ob-
jective was to obtain a series expansion valid for any eccentricity,
many of the intermediate expansions were undertaken via complex
functions with little or no recurrence relations, and which implied
a very costly determination in terms of CPU time. (ii) The expan-
sion was constructed around the restricted three-body problem and,
moreover, the perturber was supposed to move in a quasi-circular
orbit.

If we hope to adapt this expansion to the problem at hand, we
must solve these limitations. This will be the aim of this section.
On one hand, we present simpler intermediate expansions in terms
of Newcomb operators, and the expansion is re-constructed for the
case of a high-eccentricity perturber. Finally, it is also important to
mention that the original expansion was limited to two dimensions.
In other words, the motion of all bodies was supposed to occur in a
plane. Although this limitation is important for studies in asteroidal
dynamics, it is not very restrictive in the case of extrasolar planets.
In most cases, the mutual inclination of these bodies is completely
unknown and therefore usually assumed to be zero.

3.1 The direct part of F1 and the parameter δ

As usual, we begin discussing the direct part of the disturbing func-
tion, which contains the main problems in convergence. In terms of

the heliocentric radial distances r i of both planets, we can write it
as

1

�
= (

r 2
1 + r 2

2 − 2r1r2 cos S
)−1/2

(7)

where S = f 1 − f 2 + �� is the angle between both bodies as seen
from the central mass, f i are the true anomalies, and �� = � 1 −
� 2 is the difference in longitudes of perihelia. Introducing the ratio
ρ = r 1/r 2, we can rewrite equation (7) in a more treatable form as

r2

�
= (1 + ρ2 − 2ρ cos S)−1/2. (8)

Instead of expanding this function in Fourier series of S or power
series of ρ (as commonly used in classical approaches), here we
choose a different route. Defining x = ρ2 − 2ρ cos S, we can write

r2

�
= (1 + x)−1/2 . (9)

This is the key of our method. The expression of the direct part
of the disturbing function has gained in simplicity, as the number
of pertinent variables has been reduced to one. The variable x is a
measure of the proximity of the initial condition to the singularity
in 1/�. It is equal to −1 at the pole, and takes values larger than
this for every point (ρ, cos S) outside the collision point. Notice that
the magnitude of ρ or the value of S are not intrinsically significant
to the disturbing function, only the distance from the singularity is
actually important.

In this manner, the problem of the expansion of 1/� has been
reduced to that of the function (1 + x)−1/2, and the convergence is
thus independent of ρ. In Beaugé (1996) this function was expanded
via a Taylor series in x around the point x = 0. This is a good solution
for initial conditions close to the origin, but implies a huge number
of terms if we wish to analyse values of x far from zero. Because in
this work we are interested in practical applications, it is important
to reduce the number of terms to a minimum. We must then search
for a different approach. A solution is to approximate (1 + x)−1/2

by a linear fit in powers of x. In other words, we express

(1 + x)−1/2 

N∑

n=0

bn xn (10)

by a polynomial of order N, where the coefficients bn are determined
numerically via a linear regression. As the original function has a
singularity at x = −1, this point must be excluded from our data.
Thus, the numerical fit is performed using values of x > −1 + δ,
where δ is a positive parameter close to zero. The smaller its value,
the better the approximation to the real function near the singularity.
However, the smaller the value of δ, the larger the value of N will
have to be in order to guarantee an adequate precision for all values
of the independent variable.

In practice, a compromise must be reached. The adopted value
of δ will depend on two factors: first, the mean-motion resonance
and/or the region of the phase space of interest; secondly, the degree
of precision desired of the expansion. Fig. 1 shows the relative error
of equation (10) for N = 30 and two values of δ. The solid line
represents the case of δ = 0.1 while the dashed line represents the
case δ = 0.01. We can see that for most of the interval of x, this
larger value of δ yields a much higher precision, and the error lies
in the order of 10−6. This is about three orders of magnitude lower
than in the other case. Conversely, as x → −1, the fit with δ = 0.01
is much more precise. Of course, larger values of N will diminish
the error in both cases, but at the cost of increasing the number of
terms enormously.
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Figure 1. Relative error of the approximation given by equation (10) and
the original function 1/

√
1 + x , as a function of x, for two values of δ. The

continuous line shows the case δ = 0.1 and the dashed line shows δ = 0.01.
In both examples, we chose N = 30.

The question is now how to relate a given interval in x with con-
crete initial conditions for the three-body problem. In other words,
given a certain configuration for both planets, what interval of values
of x can we expect?

Imagine that both planets mi lie in the vicinity of a generic mean-
motion commensurability (p + q)/p. Then, we can define qσ i =
(p + q)λ2 − pλ1 − q� i , with i = 1, 2, as the two resonant angles
of the system. Let us consider the simplest case and suppose that
the eccentricity of the exterior body is set to zero (i.e. e2 = 0),
and set the semimajor axes such that their ratio is equal to exact
resonance. In this scenario, let us consider all the possible initial
angular variables of the problem that yield a certain value of (k,
h) = e1(cos qσ 1, sin qσ 1). For each of these initial conditions, we
calculate x and determine its minimum value xmin. This gives us as
a final product a set (k, h, xmin) for each resonance. The result can
now be plotted in the form of a grey-scale graph of equal value of
xmin. This is shown in Fig. 2 for four different commensurabilities.
The broad white lines, observed in all but the 3/1 resonance, mark
the location of the collision curve, which is identified as those points
where xmin = −1.

It can be easily shown that the geometry of the level curves follows
very closely the topology of the resonant phase plane, averaged
over short-period terms. In other words, there seems to be a direct
link between the value of xmin and the averaged resonant disturbing
function 〈R〉. The maximum value of xmin lies in the apsidal axis (i.e.
h = 0) and corresponds to the minimum of 〈F1〉. This value is related
to the corotation point of the resonance and, thus, to the equilibrium
solution of the commensurability. Notice that this corotation may
occur for eccentricities higher than that for which orbital overlap is
possible. The minimum value of xmin (equal to −1) corresponds to
the singularities of 〈F1〉.

We can also note that there is no direct relationship between the
eccentricity and xmin. A small amplitude librating orbit with a large
eccentricity may have a large value of xmin, while a quasi-circular
orbit may have a value very close to −1. In principle this is not a
good thing, as it means that an expansion of the disturbing function
may yield a better precision for high eccentricities than for circular
orbits. However, it does have the advantage that it guarantees that the
same expansion will have a minimum error in precisely the region
of the phase space where most of the resonant orbits are located.
More importantly, as we are approximating the function 1/� by a
truncated polynomial in x, this expansion will have no singularities.
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Figure 2. Level curves of xmin in the plane (k, h) = e1(cos qσ 1, sin qσ 1)
for four different mean-motion resonances.

This means that our expansion will be valid for all values of the
eccentricities or semimajor axes, although it may underestimate the
true function close to the collision curve.

Possibly the greatest advantage of using x as a parameter of the
expansion lies in the fact that it is a variable of the three-body
problem, and not of the two-body problem. Depending on the angles,
a given ei or α = a1/a2 may yield any value of F1, from a local
minimum of the function to a singularity. This problem does not
occur in our case, making x much more adequate.

Summarizing then, if we are interested in studying systems lo-
cated at low eccentricities, the expansion developed in this paper is
possibly not the best option, and usual methods are recommended.
However, if the problem may present high eccentricities with a pre-
dominance of motions in libration in mean-motion resonances, then
this method may be a good choice. It is important to recall that
many of the extrasolar planet pairs observed in resonant configura-
tion lie precisely in the region of the corotation point, where xmin is
maximum and the error of the present expansion is minimum.

In view of these discussions, and as we are not interested in solu-
tions very close to the collision curve, we need not consider a very
small value of δ for our expansion. In all the following calculations,
we choose δ = 0.1 and N = 30. This guarantees a precision of about
10−6 in the polynomial expansion of equation (2), although it does
mean that the expansion underestimates the value of the perturbation
near the collision curve.

Having finally opted for values of these parameters, we can re-
turn to our expansion. Introducing the explicit expression for x into
equation (10), we can write the truncated series as

r2

�



N∑
k=0

n∑
j=0

ck(−2) j

(
k
j

)
ρ2k− j cos j S (11)

where ck are constant coefficients, easily obtainable in terms of the
original bk. Changing from powers of the cosines to multiples of the
argument, we can rewrite this as
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a2

�



N∑
k=0

N−k∑
i=0

2Ak,iα
m

(
r1

a1

)m(
r2

a2

)−m−1

cos kS (12)

where m = 2i + k. Expanding S and passing from trigonometric
functions to their exponential counterparts, we obtain

a2

�



N∑
k=0

N−k∑
i=0

Ak,iα
m

×
[(

r1

a1

)m

E
√−1k f1

(
r2

a2

)−m−1

E−√−1k f2 e
√−1k��

+
(

r1

a1

)m

E−√−1k f1

(
r2

a2

)−m−1

E
√−1k f2 e−√−1k��

]
. (13)

This constitutes the final expression of the direct part of the disturb-
ing function, as yet in terms of the true angular variables.

3.2 From true to mean angular variables

In the present work, we limit the applicability of the resulting ex-
pansion of F1 in two ways: (i) we disregard the behaviour of the
system beyond the collision curve of a given resonance, and (ii)
we restrict the eccentricities ei of the planets to ∼0.5. Both these
conditions, together with the adoption of the reasonably moderate
value for N, allow us to avoid all the complicated transformations
introduced in Beaugé (1996) for the passage from f i to Mi. We can
then simplify greatly our work and make use of the well-known
Newcomb operators and Hansen coefficients.

Momentarily dropping the subindex in the orbital elements of the
body, we can write(

r

a

)n

cos (k f ) =
∞∑
j=0

(
Xn,k

j + Xn,k
− j

)
cos ( j M)

(
r

a

)n

sin (k f ) =
∞∑
j=0

(
Xn,k

j − Xn,k
− j

)
sin ( j M) (14)

where the n index may be either positive or negative. Xn,k
j are

called Hansen coefficients and are a function of the eccentricity (e.g.
Brouwer & Clemence 1961; Kaula 1962). The coefficients have the
following explicit expressions

Xn,k
j = e|k− j |

∞∑
s=0

Y n,k
s+u1,s+u2

e2s (15)

where u1 = max(0, j − k) and u2 = max(0, k − j). Y n,k
s+u1,s+u2

are
referred to as Newcomb operators. They have the great advantage
of having simple recurrence relations (see Kaula 1962) and are thus
very easy (and fast) to calculate for any value of the index. Introduc-
ing equation (14) into equation (13) and after some simple algebra,
we finally obtain(

r

a

)n

cos (k f ) =
∞∑

i=0

∞∑
m=−∞

Bn,k,i,mei cos (mM)

(
r

a

)n

sin (k f ) =
∞∑

i=0

∞∑
m=−∞

Cn,k,i,mei sin (mM) (16)

where Bn,k,i,m and Cn,k,i,m are constant coefficients obtained as func-
tion of Newcomb operators. Their advantage with regards to the
Hansen coefficients lies in the fact that they are independent of the

eccentricity, and thus invariant for all initial conditions. Thus, they
only need to be determined once.

As a final step, introducing the transformation (16) into the ex-
pansion of the direct part of the disturbing function, and after a
cumbersome reordering of the terms, we obtain

a2

�



∞∑
j,k=0

∞∑
m,n=−∞

N∑
l=0

N−l∑
i=0

Al,i D2i+l, j,k,m,n

× α2i+l ei
1e j

2 cos (mM1 − nM2 + l�� ) (17)

where the D2i+l, j,k,m,n coefficients are given by

D2i+l, j,k,m,n = 1

2γmγn
(B2i+l,l, j,|m| + sign(m)C2i+l,l, j,|m|)

× (B−2i−l−1,l,k,|n| + sign(n)C−2i−l−1,l,k,|n|) (18)

and where γ m is a simple bi-valuate function defined as

γm =
{

1/2 if m = 0
1 if m > 0.

(19)

In the cases where we are studying the vicinity of mean-motion
resonances, it is not worthwhile to maintain the sum in α. It is much
better to expand this contribution in a Taylor series around the exact
resonances, keeping only two or three orders of the expansion. This,
however, will be detailed in the next section.

3.3 The indirect part of the disturbing function

Recall from equation (6) that the indirect part of F1 is given by a
function T 1 which depends on the time derivatives of the Cartesian
coordinates. As

ẋi ≡ dxi

dt
= ∂xi

∂Mi

dMi

dt
= ∂xi

∂Mi
ni , (20)

where Mi is the mean anomaly and ni is the mean motion, the indirect
part can be approximately rewritten as

T1 = κ2m1m2α
−1/2

×
[

∂

∂M1

(
x1

a1

)
∂

∂M2

(
x2

a2

)
+ ∂

∂M1

(
y1

a1

)
∂

∂M2

(
y2

a2

)]
.

(21)

We show explicitly the calculations for (x1/a1). Those for the other
coordinates are analogous. We begin by recalling

x1

a1
=

(
r1

a1

)
cos ( f1 + �1)

= 1

2

(
r1

a1

)
E

√−1 f1 E
√−1�1 + 1

2

(
r1

a1

)
E−√−1 f1 E−√−1�1 . (22)

Introducing the transformation (16), we can write

x1

a1
=

∞∑
i=0

∞∑
j=−∞

Ii, j e
i cos ( j M1 + �1)

y1

a1
=

∞∑
i=0

∞∑
j=−∞

Ii, j e
i sin ( j M1 + �1) (23)

where

Ii, j = 1

2γ j
(B1,1,i,| j | + sign( j)C1,1,i,| j |). (24)
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Differentiating these equations with respect to the mean anomalies,
and introducing the result into T 1, we obtain the following expres-
sion:

T1 = κ2m1m2

a2α1/2

∞∑
j,k=0

∞∑
m,n=−∞

mnI j,m Ik,n

× e j
1ek

2 cos (m M1 − nM2 + �� ). (25)

Notice that, except for the dependence on α, this series has the same
aspect as the direct part of F1. To complete the similarity, we can
substitute the factor α−1/2 by a power series expansion

α−1/2 =
2N∑
i=0

Aiα
i (26)

where Ai are constant coefficients. With this change, T 1 now reads

T1 = κ2m1m2

a2

2N∑
i=0

∞∑
j,k=0

∞∑
m,n=−∞

Ai mnI j,m Ik,n

× αi e j
1ek

2 cos (mM1 − nM2 + �� ) (27)

which is the final expression for the indirect potential. As it now has
the same functional form as the expansion of 1/�, we can unify both
expressions and obtain a single series for the complete disturbing
function of the planetary three-body problem as

F1 = κ2m1m2

∞∑
j,k=0

∞∑
m,n=−∞

N∑
l=0

2N∑
i=0

Ri, j,k,m,n,l

× ai
1

ai+1
2

e j
1ek

2 cos (mM1 − nM2 + l�� ) (28)

where the final coefficients are given by

Ri, j,k,m,n,l = Al,(i−l)/2 Di, j,k,m,n − δl,0 Ai mnI j,m Ik,n (29)

where δl,0 is the Kronecker delta function. Note that these coeffi-
cients are constant for all initial conditions, and therefore need only
be determined once. Equation (28) constitutes our final expression
for the general disturbing function. In the next section we analyse
the case of planets in commensurable orbits, obtain a resonant ver-
sion for F1, and discuss the averaging of the system with respect to
short-period perturbations.

4 T H E R E S O NA N T H A M I LTO N I A N

4.1 The averaged expansion

Suppose that both planets lie in the vicinity of a generic (p + q)/p
mean-motion resonance, with q �= 0. We define the following set of
planar canonical variables

λ1; J1 = L1 + s(I1 + I2)

λ2; J2 = L2 − (1 + s)(I1 + I2)

(1 + s)λ2 − sλ1 − �1 = σ1; I1 = L1 − G1

(1 + s)λ2 − sλ1 − �2 = σ2; I2 = L2 − G2 (30)

where s = p/q. The last two angular variables are usually referred to
as the resonant angles, and their conjugate momenta are I i ∼ e2

i (in
the case of small eccentricities). Let us see how a generic periodic
argument θ of F1 appears in this new set. Introducing the passage
(M1, M2, � 1, � 2) → (λ1, λ2, σ 1, σ 2), we obtain

θ = mM1 − nM2 + k��

= mσ1 − nσ2 + k(σ2 − σ1) + ((m(p + q) − np)Q (31)

where qQ = λ1 − λ2 is the synodic angle. Note that this implies that
all periodic terms of the disturbing function are really a function of
only three independent angular variables (σ 1, σ 2, λ1 − λ2). Thus,
the problem is a three-degree-of-freedom system, and the canonical
moment associated to λ1 + λ2 is constant of motion. In other words

J1 + J2 = const. (32)

We can then redefine the resonant variables (30) to include this
symmetry, and express the Hamiltonian in terms of the set (I 1, I 2,
q(J 1 − J 2), σ 1, σ 2, Q), where (J 1 − J 2) is the canonical conjugate
of the synodic angle.

Our problem then has two first integrals: the Hamiltonian F =
F0 + F1 and J tot = J 1 + J 2. This last function is simply the total an-
gular momentum expressed in the new variables (see Michtchenko
& Ferraz-Mello 2001). It is well known that, for all initial conditions
in the vicinity of the commensurability, the frequency of Q is much
higher than that of σ i . Thus, it is common practice in these cases to
average the system with respect to the synodic angle, retaining thus
only those perturbations which are of long period. Introducing the
notation

F1 ≡ 1

2π

∫ 2π

0

F1 dQ (33)

we can then average the disturbing function and thus eliminate yet
another variable, reducing the system to just two degrees of freedom
(I i, σ i ). After a few algebraic manipulations, the averaged expres-
sion for the potential reads

F1 = κ2m1m2

a2

3∑
i=0

jmax∑
j=0

kmax∑
k=0

umax∑
u=0

lmax∑
l=−lmax

Ri, j,k,u,l

× (α − α0)i e j
1ek

2 cos (uqσ1 + l(σ2 − σ1)) (34)

where we have substituted the series in α by a third-order Taylor
expansion around the value at exact resonance: α0 = (1 + 1/s)−2/3.
The forms of the new averaged coefficients Ri, j,k,u,l are easily ob-
tained from their original definition in equation (29), substituting
the resonant condition m(p + q) − np = 0. The upper limits of the
sums, jmax, kmax, umax, lmax, are user-defined and depend on the de-
sired precision for the expansion and on the planetary eccentricities.
For quasi-circular orbits, these values can be chosen as small as 2
or 4, while for highly eccentric configurations it may be necessary
to adopt limits up to 15. Due to the D’Alembert properties of the
disturbing function, not all the indices yield non-zero coefficients.
In particular, all terms with j < |uq − l| and k < | l | are null, and
if l is an even (odd) number, then only even (odd) values of k are
relevant. The same holds for j with regards to uq − l.

Finally, due to the existence of the parameter δ > 0, which causes
our expansion to underestimate the value of the exact function near
the singularities, outside the collision curve our model usually re-
quires fewer numbers of terms (for a given precision) than the clas-
sical Laplace or Kaula expansions.

4.2 Comparisons with numerical calculations

In the following section we will apply this expansion to several
resonance relations between the planets, and discuss the information
the model can yield. Before this, however, it would be interesting to
present a few comparisons of the final expansion (34) with numerical
determination of the exact averaged disturbing function.

Typical results for the 2/1 resonance can be seen in Fig. 3 where
we show the variation of F1, and its partial derivatives with respect
to σ 1 and e1, as a function of the eccentricity of the inner planet. The

C© 2003 RAS, MNRAS 341, 760–770
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Figure 3. Variation of |F1|, and partial derivatives, as a function of e1.
Continuous lines show exact values determined numerically. Crosses indi-
cate solutions of the model. Units are such that κ = 1.

exact function, determined numerically, is presented by the contin-
uous lines, while the result of the expansion is shown by crosses. In
all cases we have chosen α = α0, σ 1 = 90◦ and σ 2 = 125◦. These
two values for the resonant angles were chosen as a compromise
between the best and worst case scenarios (i.e. farthest and clos-
est to the collision curve). In the three plots on the left we took
e2 = 0.1, while the graphs on the right were obtained considering
e2 = 0.4.

In the first case, we can see that the agreement between both
sets of data is very good, even for large values of the eccentricity
of the inner planet. Both the modelled disturbing function and its
derivatives reproduce the trend of the real function qualitative and
quantitatively with small error. In the case of large e2, the precision
of the analytical model is still good for values of e1 smaller than
∼0.3. After this, the model underestimates the magnitude of the
real function. The reason for this is the existence of a singularity for
e1 ∼ 0.52. Obviously the model cannot reproduce this behaviour, but
the important characteristic is that it is still valid and yields accurate
results outside the immediate vicinity of collision point.

The model can also be checked in the case of real planets in
other resonant or near-resonant configurations. As an example, we
present the Jupiter–Saturn system which is close to the 5:2 reso-
nance. Although exact resonance does not exist between these plan-
ets, the mean motions of Jupiter and Saturn obey the relation 5nSat −
2nJup ≈ 0. Using the averaged model described in this section, we

Figure 4. Energy (vertical curves) and angular momentum (horizontal
curves) levels of the Jupiter–Saturn system in the (a2, e2) plane of the initial
semimajor axis and eccentricity of Saturn. The energy and angular momen-
tum levels shown by thick curves correspond to the actual configuration of
the Jupiter–Saturn system. The location of Saturn is shown by a cross.

calculated the levels of the constant total energy and angular mo-
mentum, which are shown in Fig. 4. The energy (vertical curves) and
angular momentum (inclined curves) levels are plotted in the (a2,
e2) plane of initial semimajor axis and eccentricity of Saturn. The
initial values of the semimajor axis and eccentricity of Jupiter were
fixed at a1 = 5.2025 au and e1 = 0.046 (these values correspond to
the time-averaged values of the orbital element of the Jupiter). The
initial values of the critical angles were fixed at their actual values
σ 1 = 45.6◦ and σ 2 = −30.5◦.

We also integrated numerically the actual Jupiter–Saturn system
over 400 000 yr. The values of the total energy and angular momen-
tum were obtained equal to F = −0.0042143 and J tot = 0.019203,
respectively, in units of the solar mass, astronomical unit and year.
The levels corresponding to these values are shown by thick curves
in Fig. 4. The position of Saturn in the (a2, e2) plane is shown by
a cross symbol. The coordinates of Saturn obtained through the
numerical integration of the Jupiter–Saturn system are the time-
averaged values of its orbital elements. Comparing the results of
numerical and analytical modelling in Fig. 4, we note they are in
very good agreement, and even far from exact resonance the model
yields precise surfaces of constant energy and angular momentum.

5 A P P L I C AT I O N TO T H E 2/1 R E S O NA N C E
I N T H E G L I E S E 8 7 6 S Y S T E M

In this section we apply the model to the case of the 2/1 resonance in
the GJ 876 planetary system and study the main characteristics of its
phase space. We begin writing the averaged resonant Hamiltonian
in the form

F = F0(a1, a2) + F1(a1, a2, e1, e2, σ1, σ2), (35)

where the Keplerian part of the Hamiltonian, F0, is given in equa-
tion (4) and the averaged disturbing function F1 is given in equa-
tion (34). The set of the averaged canonical variables for this reso-
nance is given by
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σ1 = 2λ2 − λ1 − �1; I1 = L1(1 −
√

1 − e2
1)

σ2 = 2λ2 − λ1 − �2; I2 = L2(1 −
√

1 − e2
2) (36)

where we recall that Li = m ′
i
√

µi ai (i = 1, 2), and m ′
i and µi are

the reduced planetary masses given in equation (2). The system has
two integrals of motion, namely J 1 and J 2, given by

J1 = L1 + (I1 + I2) = const

J2 = L2 − 2(I1 + I2) = const. (37)

Note that the time variation of the planetary semimajor axes are
constrained by the existence of two integrals, J 1 and J 2, and can be
obtained easily through equation (37). The total angular momentum
J tot is given by a sum J 1 + J 2. The Hamiltonian has two degrees of
freedom and the structure of its phase space can be studied through
the construction of surface of section for a large set of initial condi-
tions, such as eccentricities and critical angles.

In this section, we mainly used the Keck+Lick orbital fit of the
GJ 876 system reported in Laughlin & Chambers (2001, table 3).
The masses are given by M0 = 0.32MSun, M1 = 0.92M Jup and M2 =
3.08M Jup, for the central star, inner and outer planets, respectively.
The semimajor axes and eccentricities used were: a1 = 0.1291 and
a2 = 0.2067 au; e1 = 0.252 and e2 = 0.046. With these numerical
values we can obtain the constants of motions, J tot = 0.005801 and
J 2 = 0.004637, in units of the solar mass, astronomical unit and year.
The Hamiltonian corresponding to the current system was evaluated
using equation (35) as −0.133513, which is in good agreement
with the total orbital energy calculated through the direct numerical
integration as −0.133552.

5.1 Energy levels in representative planes

We begin our analysis of the dynamics of the Hamiltonian system
(35) by plotting, in Fig. 5, the energy level curves in the space of
initial conditions. We represent the space of initial conditions in
two planes. The first, shown in Fig. 5 top, corresponds to the (e1, e2)
plane of initial eccentricities, where the initial values of the critical
angles σ 1 and σ 2 are fixed at either zero or 180◦. When σ i (i = 1,
2) is zero, the corresponding eccentricity ei is denoted as positive.
Conversely, ei is written as a negative number when σ i = 180◦. The
second representative plane is chosen as the (σ 1, σ 2) plane, where
the planetary eccentricities are now fixed at their initial values (Fig. 5
bottom).

In the construction of the (e1, e2) representative plane, the choice
of initial angular variables, σ 1 and σ 2, is based on previous studies
of the first-order resonance (Henrard & Lemaı̂tre 1983). Indeed,
outside the resonance, σ 1 and σ 2 circulate and go through either
0 or 180◦ for all initial conditions. Inside the 2/1 resonance, all
symmetric periodic solutions of the Hamiltonian are at σ i = 0 (mod
π) and the motion is described by oscillations about the centres
located at either σ i = 0 or σ i = 180◦ (for i = 1, 2). Hence, the
critical angular variables can initially be fixed at 0◦ or 180◦, without
loss of generality.

The characteristic curves, along which σ̇1 = 0 and σ̇2 = 0, are
shown in Fig. 5 top by large symbols. These curves can be easily
obtained from conditions of periodic motion defined by

∂F

∂I1
= ∂F

∂I2
= 0,

where the expression of F is given in equation (35). These curves
are expected to be the seats of characteristic resonant motion (ei-
ther stable or unstable librations) and their neighbourhood can be

Figure 5. Top: energy level curves of the Hamiltonian given by equa-
tion (35) on the (e1, e2) plane of initial conditions. The signs ‘+’ and ‘−’
preceding the eccentricity indicate that σ i is equal to 0 or 180◦, respectively.
A grey level code is used to measure energy values; the lighter regions in-
dicate larger values of energy, whereas the darker regions indicate smaller
values of energy. The equilibrium solutions of the Hamiltonian are indicated;
the point P+ is a stable equilibrium solution surrounded by a libration zone,
while P− is an unstable equilibrium solution, indicating the onset of chaos.
The curves, along which σ̇1 = 0 and σ̇2 = 0, are plotted by large symbols.
The current location of the GJ 876 system is shown by a star symbol. Bottom:
energy levels of F on the (σ 1, σ 2) plane. The graph corresponds to planetary
eccentricities equal to e1 = 0.252 and e2 = 0.046.

referred to as a resonance zone. For instance, the onset of zones of
libration of the angles σ i is separated from the domains of secular
motion by true infinite-period separatrices.

The intersections of the characteristic curves give us the location
of the equilibrium solutions of the Hamiltonian on the (e1, e2) plane,
marked by P+ and P− in Fig. 5 top. The nature of these solutions
can be analysed on the (σ 1, σ 2) plane in Fig. 5 bottom. The angular
configuration of the dynamical system characterized by maximum
of energy is stable and corresponds to σ 1 = 0 and σ 2 = 0 (stable P+-
point). The opposite configuration at σ 1 =π and σ 2 = 0 corresponds
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Figure 6. Temporal evolution of eccentricities and angular variables σ 1 and
σ 2 for initial conditions similar to the actual GJ 876 system. Dots show the
results of a numerical integration of the exact equations, while the application
of the analytical model is presented by thick curves.

to minimum of energy and is unstable (unstable P− point). The
stability of the equilibrium points is defined by the behaviour of the
Hessian matrix of F assessed at the point. It is worth emphasizing
that, although the construction of a representative (σ 1,σ 2) plane
may seem irrelevant in this case, it is important when searching for
asymmetric librations (Beaugé 1994).

The current position of the GJ 876 planets in this plane is shown
by a star symbol, confirming that this system is deeply inside the
2/1 mean-motion resonance, very close to a stationary solution in
both resonant angles σ 1 and σ 2.

Finally, Fig. 6 shows the temporal evolution of both eccentrici-
ties and angular variables obtained with a numerical integration of
the exact equations (dots). With thick curves we present the results
using the model. As our Hamiltonian function has been averaged
over short-period terms, the analytical data appear smoothed over
all high-frequency oscillations. The overall trend, however, is prac-
tically identical in both cases.

5.2 Periodic orbits in the GJ 876 and HD 82943 systems

In Fig. 5 we have shown that it is possible to establish analytically
that the GJ 876 system lies close to a stationary solution where both
resonant angles librate simultaneously around zero. This configura-
tion is sometimes called a symmetric apsidal corotation and, when
the short-period terms are re-introduced into the Hamiltonian, they
constitute stable periodic orbits.

Recently, Hadjidemetriou (2002) determined numerically the
families of stable symmetric periodic orbits for both the GJ 876 and
HD 82943 planetary systems, and presented his results as curves in
the plane of initial eccentricities (e1, e2). Each point in this plane
corresponds to different values of the total energy and angular mo-
mentum integrals. He noticed two different families: one occurs for
σ 1 = 0 and σ 2 = 180 degrees, and the other for σ 1 = 0 and σ 2 = 0.

We can now use our model to obtain these stationary solutions
and compare them to the numerical values of that paper. Results are
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Figure 7. Families of periodic orbits for the HD 82943 and GJ 876 planetary
systems. In the top graph, numerical results are shown by continuous lines,
while analytical solutions are shown by crosses. In the bottom graph, the
position of the GJ 876 planets is shown by a full circle. In both plots, the
convergence limit of the Laplace expansion is represented by dashed lines.

presented in Fig. 7, where the top graph corresponds to the masses
of the HD 82943 system, while the bottom plot shows the families
of the GJ 876 planets.

In the top graph, the numerically determined periodic orbits are
shown by continuous curves, while the results of our model are
represented by crosses. The solutions for σ 2 = 180 are restricted in
the small ‘hump’ seen in the region of small values of e1, while the
stationary points with σ 2 = 0 are located in the other continuous
curve. With dashed lines we have drawn the convergence limit of the
Laplace expansion of the disturbing function. Notice that most of the
area of the plane is inaccessible to classical analytical expressions,
while the model presented in this paper shows a very good agreement
even for eccentricities of the order of 0.5.

In the bottom plot only the analytical results are shown (continu-
ous lines), together with the Keck dynamical fit (Lee & Peale 2002)
of the orbital elements of the GJ 876 planets (full circle). Note that
the position of this system lies beyond the convergence limit of the
Laplace expansion; its applicability is thus seriously compromised.

5.3 Surfaces of section

As a final example of the applications of our expansion, in this
subsection we present a study of some regions of the phase space of
the GJ 876 system by using the surfaces of section technique. Two
sections have been chosen for the representation. The first section,
corresponding to the inner planet, is a section by the plane sin σ 2 =
0, when σ̇2 < 0, and its coordinates are e1 cos σ 1 versus e1 sin σ 1.
The second section corresponds to the outer planet and is a section
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Figure 8. Top: surfaces of section of inner planet. Bottom: surfaces of
section of outer plane. The sections were constructed along the energy level
corresponding to the current best-fitting configuration of the GJ 876 system.
The continuous curves show boundaries of the energy manifold. The sections
corresponding to the actual GJ 876 system are shown by thick curves.

by the plane sin σ 1 = 0, when σ̇1 < 0, and its coordinates are
e2 cos σ 2 versus e2 sin σ 2.

The first set of surfaces of section was calculated along the en-
ergy level F = −0.133513 which corresponds to the energy of
the Keck+Lick dynamical fit of the planetary orbits. Fig. 8 shows
the sections of the inner planet on the top panel and the sections
of the outer planet on the bottom panel. The continuous curves
surrounding the figure represent the boundaries of the energy man-
ifold. We also plot by thick lines two sections on each plane which
correspond to the current GJ 876 system.

For energies close to the stable equilibrium point, only the li-
bration regime of motion is possible, and no domains of chaotic
motion are seen on the sections. We can see libration islands on
the inner planet section and the domain of libration of σ 2 about
0 on the outer planet section. Both critical angles are in libration
about 0, although the libration trajectory of the outer planet may
involve the origin on the phase space and appear kinematically as a
prograde circulation. For increasing energies, the domain of the res-
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Figure 9. The same as in Fig. 8, except for the lower energy level.

onant regime decreases and shrinks into a stable equilibrium point
at F = −0.133508, denoted by P+ in Fig. 5 top.

To get an idea of the behaviour of the GJ 876 system at lower
energies, we present in Fig. 9 the set of surfaces of section calculated
along the energy level F = −0.133615 shown by the dashed curve
in Fig. 5 top. In this case, the domain of the 2/1 resonance presents a
complicated dynamical structure. There are three different regimes
of motion and the domains of transition between them are chaotic.
The main libration regime can be seen as islands of regular motion
near the right-hand boundary of the energy manifold on the section
of the inner planet and near the origin in the section of the outer
planet. In this regime, the critical angle σ 1 remains in libration
about 0, but the angle σ 2 librates now about 180◦. The domains of
the main libration regime are surrounded by a sea of chaotic motion.
Two other regimes of motion are characterized by libration of the
angle σ 1 about 0 and retrograde circulation of the angle σ 2 (and
�� ).

Thus, it seems that, although the present state of the planets is
characterized by a very regular structure of the phase space, the same
is not true for different values of the energy integral. If this system
has undergone large orbital migration (which may still be in play),
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then it is possible that the planets may have suffered significant
chaotic evolution.

6 C O N C L U S I O N S

In this paper we present a new analytical expansion for the Hamil-
tonian of the planar planetary three-body problem, whose validity is
not restricted to near-circular orbits, but is useful for very high val-
ues of the eccentricities of the massive bodies. The final expression
is written as a power series of the semimajor axes and eccentrici-
ties, and cosines of the angular variables. It can be applied to any
generic mean-motion commensurability between both planets or,
conversely, to the non-resonant case. Through the use of modified
Newcomb operators, the resulting coefficients have relatively simple
recurrence relations, making their determination straightforward. In
this regard, the present expansion is much more practical than that
presented originally by Beaugé (1996), making it easily applicable
to several physical problems in our Solar System and/or extrasolar
planetary systems.

Comparisons between the model Hamiltonian and the exact (nu-
merically averaged) function show very good precision as long as
the initial conditions do not place the system in the vicinity of the
collision points. Application of this expansion to the case of the 5/2
mean-motion resonance and the GJ 876 and HD 82943 extrasolar
planetary systems also shows very good agreement with respect to
the integrations of the exact N-body equations. Particularly, all the
topological characteristics of the phase space, including equilib-
rium solutions, periodic orbits and temporal evolution of the orbital
elements, seem to be well reproduced by our function.

It is important to recall that most extrasolar planets have orbital
eccentricities above the convergence limit of the classical Laplacian
disturbing function. The present expansion thus constitutes what is
probably the first adequate tool with which to construct analytical
models for these systems. One of its main advantages over numer-
ical approaches is in CPU time. While the numerically determined
periodic orbits shown in Fig. 7 took several hours of calculation
(with a personal computer), the analytical results required only a
few seconds. The construction of the surfaces of section of Figs 8
and 9 took a couple of hours with the model; a similar feat with a
numerically averaged exact Hamiltonian would take several days.
Of course, if only a single initial condition needs to be analysed,
then a numerical integration of the exact equations is the best ap-
proach. However, extrasolar planetary orbits are many times poorly
known and their masses estimated only to within a factor of sin I.
Thus, if a whole ensemble of initial conditions (and masses) needs
to be studied, or if the aim is to identify periodic orbits of the sys-
tem with many different values of energy and angular momentum,
then numerical approaches tend to consume too many resources and
become inviable.

Another advantage of the analytical model is that it yields results
almost independent of time. For example, a numerical simulation
of GJ 876 for 10 Myr yields results which are only valid for this
time-span. If the integrated orbits are found to be stable, there is no
guarantee that this stability will be maintained if the simulation were
extended to 100 Myr, or even 20 Myr. With a Hamiltonian model
on the other hand, it is possible to map the structure and topology of
the phase space in the vicinity of the initial conditions, to estimate
periodic orbits or regions of chaotic motion, and thus to be able to

predict the dynamical behaviour of the system and stability for much
longer time-scales. As the model is much faster than a simulation,
it is also possible to search a large area of the phase space and map
areas of orbital stability where other (undiscovered) planets may
exist.

Of course, a model does not substitute an integration of the ex-
act equations. However, it is possible to use the expansion as an
exploratory tool, take advantage of its speed to find interesting
and/or novel features of the system, and then confirm these results
numerically.

Finally, it is important to bear in mind that the comparisons pre-
sented in this paper, with the exception of the surfaces of section,
are mostly examples of previously known results. Their aim is sim-
ply to test the model and not to present novel information. Concrete
applications to satellite systems and extrasolar planets exhibiting
highly elliptic motions will be presented in a forthcoming paper.

The FORTRAN code developed for this model is available upon
request.
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