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Abstract

The dynamics of two planets near a first-order mean-motion resonance is modeled in the
domain of the general three-body planar problem. The system studied is the pair Uranus-
Neptune (2/1 resonance). The phase space of the resonance and near-resonance regions is
studied by means of surfaces of section and spectral analysis techniques. After a thorough
investigation of the topology of the phase space, we find that several regimes of motion are
possible for the Uranus-Neptune system, and the regions of transition between the regimes
of motion are the seats of chaotic motion.

1 Introduction

Until recently, researches considering the long-term stability of planetary systems were based
on the studies of the dynamics of the nine planets of our Solar System and the orbital evolution
of the massive satellites of the giant planets. These studies were performed in different ways
through the solutions of averaged models (Sessin and Ferraz-Mello 1984, Hadjidemetriou 1985,
Laskar 1989, Gladman 1993, Michtchenko and Ferraz-Mello 2001a, hereafter MF2001a), or long
numerical integrations of the equations of motion of these systems (Sussman and Wisdom 1988,
Nobili et al. 1989, Lecar et al. 2001, Michtchenko and Ferraz-Mello 2001b, hereafter MF2001b).
In present day, however, the discovery of a great number of extra-solar planets has increased the
domain of these investigations.

One of the main reasons for this new interest is that some systems including more than one
planet are actually in resonant orbital configurations. In this situation, the mean motion of two
planets are commensurable. In the Solar planetary system, three near mean-motion resonances
occur: the 5/2 near-resonance in Jupiter-Saturn system, the 3/1 near-resonance in Saturn-Uranus
system, and the 2/1 near-resonance in the Uranus-Neptune. Among the known extra-solar plan-
ets, we can cite several examples of systems in near resonant configuration. In the case of
planetary systems in near first-order mean-motion resonances, one example is the pair B-C of
the planetary system orbiting the pulsar PSR B1257+12 (Wolszczan and Frail 1992). In this
system, the two planets are close to the 3/2 near-resonance. Some studies were performed on
the long-term stability of this system through simplified models (Rasio et al. 1992, Malhotra
et al. 1992). Another example is the 2/1 resonant pair of planets orbiting the star Gliese 876
recently discovered (Marcy et al. 2001). The third example is of the star HD 82943, which
also has two planets close to 2/1 mean-motion resonance (Israelinan et al. 2001). The stability
of these systems has been studied by several authors (Kinoshita and Nakai 2001, Lee and Peale



2002, Hadjidemetriou 2002). Beyond the first order resonances, there are some pairs in high-order
resonances (55Cnc, 47 Uma, etc). Another important dynamical property of planetary systems
related with the results shown in this paper, is the presence of secular locking of the line of apses
(Milani and Nobili 1984, Malhotra 2002, Michtchenko and Malhotra 2004).

In fact, resonant configuration and secular apses alignment in planetary systems may be a rule
and not an exception (see Malhotra 1998). In spite of some recent developments, the dynamics
of the near resonant configuration in planetary systems is still poorly understood (Tittemore and
Wisdom 1988, hereafter TW1988, Varadi et al. 1999, Murray and Holman 1999, MF2001a,b).
This is the main motivation of this work. We consider in this paper the case of the 2/1 planetary
mean-motion resonance. The investigation is done with the help of a general averaged planar
two-degrees-of-freedom Hamiltonian model (Section 2). The model is applied to the study of the
2/1 near-resonance in the Uranus-Neptune system. The choice of initial conditions is described
in detail in Section 3. The main regimes of motion of the system obtained over a large set of
initial conditions by means of surfaces of section and spectral map techniques are described in
Section 4 (the kernel of this paper). In Section 5, the results of the study of the 2/1 resonance
are summarized on the plane defined by two free parameters of the problem under study. Finally,
the conclusions and discussion are given in the Section 6.

2 The model

Consider a pair of planets with finite masses m; and my orbiting a central star mg (hereafter
the indexes 0, 1 and 2 refer to the central star, inner and outer planets, respectively). Suppose
that the orbital periods of the planets are close to the commensurability (p+ q)/p, where p and ¢
are small integer. In this work, our model is applied to the study of the Uranus-Neptune planetary
system which is close to the 2/1 mean-motion resonance.

In order to construct the Hamiltonian of such system, we use the canonical set of heliocentric
variables introduced by Poincaré (Poincaré 1897, Hori 1985, Laskar and Robutel 1995). Let ﬂ,

=
du;

and p;= m; 7+ (i =0,1,2) be the position and the momentum vectors of the bodies relative to

center of the mass of the system, and F::E; — 1]6 be the position vectors of the planets rﬂaﬁve
to the central star. In the Poincaré system, the canonical variables are given by the pairs (r;, p;),
and the exact Hamiltonian of the problem is written as
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G is the gravitational constant and Ay = | -7y | is the distance between planets.

The first term of the Hamiltonian (1) defines unperturbed Keplerian motion of the planets
around the star. The second and third terms are the perturbation due to the mutual attraction
between the planets; these terms will be called hereafter as direct and indirect parts of the
Hamiltonian, respectively.

We introduce the Poincaré variables:
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where a;, e;, I;, A\;, w;, ; are the planetary semi-major axes, eccentricities, inclinations, mean
longitudes, longitudes of perihelion and longitudes of nodes associated with the Keplerian part of
the Hamiltonian (1). It should be emphasized that these elements describe instantaneous ellipses
which intersect the trajectories, in contrast with the familiar heliocentric osculating orbits, which
are tangent to them (for more details, see Ferraz-Mello et al. 2004).

In the variables given by eq. (2), the Hamiltonian (1) can be written as

H = Hy + Hi, 3)
where the Keplerian part is given by
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and the mutual terms are given by the disturbing function

H, = _anizmz x R(Ai, @i, Qi Li, Li — Gi, Gi — H;). (5)

In order to study the secular and resonant dynamics of the planets, we expand the function R

in powers of eccentricities and inclinations of both planets (Le Verrier 1855). Since the inclinations

of the orbits of Uranus and Neptune are small, we restrict our model to the planar case. In the

planar expansion of R, we keep the main second-degree secular terms and the resonant terms up

to second order in eccentricities. Higher-degree secular terms are omitted since their contribution

is not important (MF2001a). The short-period terms of order of orbital periods are removed from

R through a first-order averaging, and therefore only the long period and resonant terms remain.
With the approximations done, the mutual part (5) is given by

Hl = Hsec + Hres; (6)
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For the 2/1 resonance, r = p/q and p = ¢ = 1. The coefficients a, b, ¢, d, e, f, g, h are functions
of the semi-major axes ratio a = a1 /as, and are given in the Appendix. In the case of the 2/1
resonance, the indirect part of the Hamiltonian (1) contributes with a single term, which must
be included in the coefficient e; its expression is given in eq. (15) in the Appendix.



New resonant variables may be introduced through the canonical transformation:

L = L1—G1, 01:(1+7')/\2—T)\1—1D1;

I, = LQ—GQ, 02 :(1+T)/\2—T)\1—’WQ;

Ji1 = Li+r(li + D), At 9)
Jo = Lo—(r+1)(1 + 1), A2.

In terms of these variables, the averaged Hamiltonian is cyclic in A\; and A2 and, consequently,
J1 and J; are constants of motion. The system is reduced to a system with two degrees of freedom,
whose variables are o1, 09, I and I,. The constants J; and J, appear in the Hamiltonian through
L1 and L2.

From (9), we can note that

(1+7r)Ly +rLy = (1 +7)J; +rJ2 = const,

that is, the resonant variations of the averaged semi-major axes are coupled in such a way that
the increase of one of them implies, necessarily, in the decrease of the other. Also, the amplitudes
of the semi-major axes oscillations are inversely proportional to the planetary masses (MF2001a).

2
Assuming that for small eccentricities, I; &~ J; 5, we expand H in a double series of I;, i = 1, 2.
The constant terms in the expansion can be omitted and the Hamiltonian (3) is then written as

H = 241, +L)+4B(I, + L,)* +
2CI +2DI5 + ZE\/ L1 COS(O’l — 02) +

F+\/2I, coso1 + I\/2I5 cosoy +

2RI, cos20q + 2515 cos 204 + (10)
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where the expressions and numerical values of the coefficients are given in the Appendix. The
units chosen in this work are the mass of the central body (Sun), astronomical unit and year.

The terms with coefficients A and B in eq. (10) arrive from the Keplerian parts of Hamiltonian
(4) and are of degree 2 and 4 in the eccentricities, respectively. The terms with coefficients C,
D and E come from both the secular Hgee (7) and Keplerian part (4) and are of degree 2 in the
eccentricities. Finally, the other terms come from He and are the main resonant terms (F, I)
of degree 1 in eccentricities and their second harmonics (R, S and T)).

2.1 The choice of the constants of motion J; and .J,

The coefficients of the Hamiltonian (10) are functions of the two constants J; and Jy, which
are known from initial conditions through egs. (9). In this work, we replace these quantities by
constant Jig and Jog, which can be calculated by setting e; = e2 = 0 and Lio = B/iai0, @ = 1, 2.
The choice of the semi-major axes with indices 0 is done fixing the semi-major axis of one of the
planets and calculating the other through equation:
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where qq is the ratio of the planetary semi-major axes at the exact resonance. For our purpose,
we fix the semi-major axis of Neptune at its time averaged value obtained from a numerical
integration of the exact equations of motion over 5Myr. The numerical values of a9, a0, J10,
and Joo used in the present investigations, are given in Table IT in the Appendix.

Our previous study has shown that the variation of the numerical values of the coefficients
of the Hamiltonian (10) is very small when the constants Ji, J» and the Laplace coefficients are

calculated outside the exact resonance. In this way the given approximation is realistic over the
domain under investigation.




2.2 The parameter ¢

Once the ratio of ajg and agg is kept in the neighborhood of the exact resonance value ag, the
numerical values of the coefficients B, C, D, E, F, I, R, S, T of the Hamiltonian (10) depend
weakly on the initial semi-major axes and eccentricities. These coefficients appear in eq. (10)
multiplied by a power of I; and the variations of the coefficients affect our equations only slightly.
The same is not true for the coefficient A. Indeed, we can deduce that, in the proximity of
resonance and for small eccentricities, A ~ %[(1 + 1) ny — rny], where n; are the mean motions
of the planets. This expression is a resonant combination of the planetary mean motions and,
consequently, A is very sensitive to the adopted initial conditions. In order to study our system
in several initial conditions and not only in the exact resonance, we introduce the parameter

§=2(A+0C),

which, in the first approximation, can be written as § =~ (1 4+ r)ny —rny — .

In this work, the coefficients B, C, D, E, F, I, R, S, T are fixed at the values calculated with
Jio and Jyg using egs. (16) in the Appendix. The values obtained are shown in Table III in the
Appendix. In order to describe the planetary dynamics in the neighborhood of the 2/1 resonance,
only the parameter ¢ is changed. In Section 4, we present the results of investigations done with
é = 0.0012, which is close to the actual value of the pair Uranus-Neptune, (6 ~ 0.0015). The
solutions obtained for different values of § are present in Section 5.

To prevent from the appearance of zero divisors, it is convenient to write the Hamiltonian
given by eq. (10) in the non-singular canonical variables z; = v/2I; cos g, y; = /2I; sin o;, where
i =1,2. In these variables, the Hamiltonian (10) is written as:

H = B +y?+a23+y2)°+
1
5(0=20) (@ + 47 + 23 +43) +

C(zi + 47) + D(a3 + y3) + E(z122 + y132) +
Fxq + Iz +
R(z? —y3) + S(23 — y3) + T (2122 — y132). (11)

It should be emphasized that the Hamiltonian given by eqs. (10) or (11) is valid only for small
values of the planetary eccentricities.

3 Representative plane of initial conditions

Let us now discuss the problem of the choice of the initial conditions: the initial eccentricities
and critical angles o1 and 2. The study of the dynamics of the system requires an analysis in
a four-dimensional space of initial conditions (e;,es,01,02). In this work, we restrict the set of
initial conditions fixing the initial values of angular variables at o; = 0 or w, ¢ = 1,2. It is
important to note that with this restriction, the solutions in the neighborhood of asymmetric
stable equilibrium points of the averaged system (Beaugé 1994, Beaugé et al. 2002, Ferraz-Mello
2002, Ferraz-Mello et al. 2003) are not considered.

With the choice o; = 0 and 7, we have y; = v/2I;sino; = 0. The Hamiltonian H is a quartic
polynomial with respect to z; = y/2I;(e;) coso;. The set of initial conditions belongs now to
the plane (e1,e2) and can be studied by plotting the level curves of the Hamiltonian (11) on this
representative plane. The energy levels of H = f(z1(e1),z2(e2);d) calculated with § = 0.0012
are shown in Fig. 1.

Since H is a quartic polynomial in the eccentricities, there may exist up to four real roots of
the eccentricity of the outer planet (e3), for given values of H, §, and e;. These roots can be
organized in a convenient way. When they are all real, we sort them in order of increasing value



and denote them by the letters a, b, ¢ and d, respectively. In this case, the pairs b,c and a,d
are called inner and outer pair, respectively. When one pair of the roots is not real, the simplest
way of sorting is attributing zero value for its real part, and to proceed as in the case of four
real roots. We then choose one of the real roots as the initial condition, and solve the canonical
equations of motion numerically using the integrator RA15 (Everhart 1985).

The problem, now, is the choice of one of the roots for the construction of the surfaces of
section. We can divide this problem into two parts. First, let us consider all energy levels that
are located outside the “banana” curve in Fig.1 (regions 1 and 2). Based on the numerical
experiments, we can state that, in this case, the dynamics of the system is similar, no matter
which root is chosen (a, b, ¢ or d; see MF2001a). Let us now consider the levels indicated by
the letters b, ¢, d,..., | inside the “banana” curve in Fig.1 (region 3). Again, based on several
numerical tests, we have that for these energies, the roots a and b provide the most general
information on the global dynamics of the system. In other words, would one of the roots ¢ or d
be chosen, many information revealed by the root a and b would be lost, as we will see in Section
4. In fact, in Sections 4.6 and 4.7, we will deal, in detail, with this important aspect of the phase
space, and an example showing the four sections will be given Section 4.6. The complete atlas of
sections can be found in Callegari (2003) (see also Section 3 of TW1988).

Depending on §, the number of the zero-gradient points on the representative plane varies
from one to three. For the § value used in the construction of Fig. 1, there are three points where
the gradient of H = f(e1,e2;0) is zero: the saddle point PII~, the point C corresponding to
a local minimum of energy (Hpyin), and the stable equilibrium point PIIT corresponding to a
maximum of energy H(PIIT). The plane of initial conditions can be divided into three distinct
regions. For H < Hpyi, and a given eq, there exist always two real roots es (dashed curves in
region 1). For Hp,in < H < H(PII7) (region 2), there may exist two or four real roots. Finally,
for H(PII") < H < H(PIIt) (region 3), two, four or no real roots e, exist for a given e;. In
all these cases, double real roots are also possible. For levels H > H(PII'), no real roots are
possible, since PIIT is the point of the maximum energy.

The region 1 is dominated by purely secular interactions between the planets. The region
2 is a near-resonance zone which can be subdivided into inner and outer domains. The inner
near-resonance domain is characterized by a prograde circulation of the critical angles o1 and 0.
In the outer near-resonance domain, ¢; and o2 are in a retrograde circulation. Finally, the region
3 is called resonance zone, since, as we will see in the next section, the main features of the 2/1
resonance appear when these energies are reached.

The thick curves in Fig.1 define the location of the periodic solutions on the plane (e, e2)
given by conditions:

doy _ 0H
dt oL

(12)
doy _ 0H

These curves must intercept themselves in the zero-gradient points of H = f(e1, ea) (the points
PII~, PII* and C), and will be used in the construction of the parameter plane in Section 5.

4 Dynamics of the 2/1 planetary resonance

In this section, we present a study of the dynamics of the system defined by eq. (11) using
surfaces of section and spectral analysis techniques.
The surfaces of section of planetary motion are introduced as follows. The inner planet section
(Uranus section) is defined by the condition y, = 0 and represented on the plane (e; cos Aw x
e1 sin Aw), where Aw = 01 —02 = wy—w;. The outer planet section (Neptune section) is defined



Level /Figure Energy (x107%) Regimes of motion

a/Fig.2 a 1.3 MI, MII
b/Fig.2b 1.33622 MI, MII — RIII
¢/Fig.6a 1.34 MT, RITT
d/Fig.6b 1.36 MI, RIII
e/Fig.6 ¢ 1.40 MI, RIII
f/Fig.6d 145 MI, RIII
g/Fig.8a 1.46 MI, RIII, RIV
h/Fig.8b 1.4985 MIL, RIIL, RIV
i/Fig.9 1.51 MI, RIII, RIV
j/Fig. 12 1.523 RIIL, RIV,RV
k/Fig.13a  1.55 ML, RIV
1/Fig.13b  1.90 RIV

Table 1: Energy levels used in the construction of the surfaces of sections and the regimes of
motion present on the corresponding section.

by condition y; = 0 and represented on the plane (es cos Aw X es sin Aw). It should be empha-
sized that the two sections are mathematically equivalent. However, for a better interpretation
of the results, both sections are shown in this paper.

In the construction of the sections, we use generally the root a of eq. (11) described in Section
3. As the Hamiltonian (11) is quartic with respect to z;, to construct the surfaces of sections, we
need to fix two additional conditions. These conditions were obtained from our previous numerical
experiments, in such a way that, for the inner planet section, %2 >0 and 22 < 0 (o2 = ). For

the outer planet section, %1 < 0and 21 > 0 (61 = 0). The root b of eq. (11) was used only in

the construction of the sections present in Sections 4.6 and 4.7. In that case, we use ddif < 0and
Z2 < 0 (02 = m), for the inner planet section, and % > 0 and z; > 0 (o1 = 0), for the outer
planet sections.

Another technique used in this work is the spectral analysis of the solutions shown on the
Uranus sections. For each initial condition, the system of the canonical equations of motion is
numerically integrated and the solution obtained is Fourier analyzed. The frequencies present in
the oscillation of the variable z; with amplitudes greater than 1% of the largest peak are plotted
in the spectral map. For a better resolution, we use a logarithmic scale. Since the Hamiltonian
system under study has two degrees of freedom, we expect to obtain two fundamental frequencies,
as well as their higher harmonics and linear combinations. The spectra of regular solutions show
generally a few significant peaks associated with the independent frequencies and their linear
combinations. The spectra of chaotic motion show broadband components. Thus, the spectral
analysis technique is complementary to the surfaces of sections and allows us to distinguish
between regular and chaotic motion.

Table I shows the energy levels which have been used in the study of the phase space of the
2/1 planetary resonance. The first column of Table I shows the letter of the corresponding level
in Fig.1 (a, b, ¢, d,..., 1), together with the number of the figure containing the corresponding
surface of section. The second column shows the value of the energy level. Finally, the third
column displays the regimes of motion which have been detected at the corresponding energy
level.

As the energy is increased, the system passes through several types of motion. Here, we



summarize briefly the results of our investigations, which will be discussed in detail in the next
sections. One of the regimes detected is a secular motion in the near-resonance region; this regime
is denoted by MI or MII in Table I. The other regimes of motion are related to the different types
of motion inside the 2/1 resonance. They are denoted by RIII, RIV and RV in Table I. Each
regime of motion is characterized by its periodic solution, which appears as a fixed point on the
surface of section. The domain of one regime of motion is separated from the other regions by
layers of chaotic motion. In all figures shown in the following sections, the top and middle figures
represent the inner and outer planet surfaces of section, respectively. The bottom figures show
the corresponding spectral maps. The bold curves on the surfaces of section are the boundaries
of the energy manifold: outside these curves, the quartic polynomial given by the Hamiltonian
(11) does not have real solutions.

4.1 Secular Modes

We begin our analysis of the dynamics of the 2/1 resonance showing the surfaces of section
obtained along the energy level a in Fig.1. The corresponding surfaces of section and spectral
maps are shown in Fig.2a. At this energy, the system is outside the 2/1 resonance and its
dynamics is dominated by secular interactions. In this near-resonance zone, the dynamics of the
system is characterized by two secular modes of motion known from the linear secular theories
(see Pauwels 1983, TW1988, MF2001a). There are two periodic solutions: one is given by Aw =
01 — 03 = 0 and another by Aw = +x. Hereafter we designate the solutions at Aw = 0 as Mode
I of motion and those at Aw = +7 as Mode II. On the surfaces of section in Fig. 2a, the Mode I
of motion is always located on the right-hand side of the sections, while the Mode II is located on
the left-hand side. The smooth curves surrounding each of the two fixed points are quasi-periodic
solutions.

In this paper, we describe briefly our results concerning the secular modes (for the complete
study, see MF2001a, Callegari 2003, Michtchenko and Malhotra 2004). Deeply inside Mode I, the
angle Aw oscillates around 0, while inside Mode II, Aw oscillates around ; in both cases the
eccentricity of the planets vary regularly around the values of the periodic orbits. Between the
Modes I and II, the angle Aw is in a prograde circulation, and the motion is a composition of
the two normal modes. The secular oscillations of the eccentricities always occur with opposite
phases: when the eccentricity of the outer planet e; is minimal, the eccentricity of the inner
planet e; is maximal. Conversely, when the eccentricity es is maximal, e; is minimal.

It has been shown in MF2001a that, in the near-resonance zone, the motion of the critical
angles o1, o2 is a direct (Cp) or a retrograde circulation (Cg), depending on the initial conditions.
The direct circulation corresponds to the inner pair of the roots (b or c) of eq. (11), while the
retrograde circulation corresponds to the outer pair of roots (a or d). As we are working with the
root a, o1 and o3 are in a retrograde circulation in both modes (Cg).

In the near-resonance zone, there is no real separatrix between the two modes of motion
on the surfaces of section, and the motion is always regular (MF2001a). Indeed, the spectral
map present at the bottom of Fig.2a shows the continuous evolution of the two fundamental
frequencies and their harmonics. Around Mode I of motion, the secular period of the system is
400,000 years, while around Mode II it is approximately 300,000 years. We can see that, for the
initial condition near the fixed points, the amplitude of the secular frequency is equal to zero. The
other frequency, which can also be seen in the spectral map in Fig. 2a, is the frequency associated
with the circulation of the critical angles (second fundamental frequency). It is located in the
upper part of the spectral map.

4.2 The onset of chaos at the center of Mode I1

The energy level shown in Fig.2b corresponds to the curve b in Fig.1. For initial conditions
in the neighborhood of the point PII™, the system is at the edge of the resonance zone. The
regular behavior of the system suffers qualitative changes. Note that these changes cannot be



seen on the surfaces of section in Fig.2b, where all solutions are apparently regular. However,
they are clearly visible in the spectral map near the center of Mode II. The evolution of the main
frequencies around the fixed point of Mode II is characterized, now, by an erratic scatter of the
points, which is associated with chaotic behavior of trajectories close to a separatrix.

Figure 3 shows a detail of the region of the representative plane (eq,es) around the equilibrium
point PII™. In this region, the critical angles alternate between direct and retrograde circulation,
and this fact explains the chaotic behavior indicated by the spectral map. In order to illustrate this
transition motion of the critical angles, we present in Fig. 4 the planetary trajectories calculated
for one initial condition very close to the point PII". The critical angle of Uranus changes
alternately between direct (Cp) and retrograde (Cg) circulation (Fig.4a). A similar behavior
occurs for Neptune (Fig. 4b).

It is worth emphasizing that, for the initial conditions along the energy level b, the spectral
map does not show any changes around the fixed point of Mode I of motion. There is a simple
(qualitative) physical explanation for the unstable nature of trajectories around the Mode II, at
variance with the stable configuration of Mode I. In Mode I, the lines of apses of the planets
are always aligned at the same direction, either at o4 = 0 and o2 = 0 (MI+) or at o1 = 7
and o2 = m (MI-). In Mode II, the planetary lines of apses are always anti-aligned, either at
o1 =0 and g2 = 7 MII+) or at o1 = w and g2 = 0 (MII-). These four possible geometrical
configurations of the planets are shown in Fig. 5, where the initial positions of the planets are
indicated by 1 and the intermediate positions by 2. Figure 5 shows that, at conjunctions, the very
close approach between the two planets occurs at MII-. In the near-resonance domain, where the
secular perturbations dominate the dynamics of the system, this configuration remain stable (at
least for the mass ratio under study). However, under growing resonant perturbations, trajectories
from the neighborhood of MII- become unstable. In Mode I of motion, at the conjunctions, Uranus
is at perihelion and Neptune at aphelion of their orbits. This is a stable resonant configuration
of the system. However, as we will see in Section 4.6, the stability of Mode I on the sections of
the kind b is guaranteed up to H = +1.51 x 10~? only.

4.3 Regime III

For energies larger than H = +1.33622 x 10~? (level b), the system enters into the resonance
zone, and the main features of the 2/1 resonance appear. Let us consider, now, the levels ¢, d, e,
ffrom Table I; the corresponding sections are shown in Fig.6. A new resonant regime of motion
appears besides the retrograde circulations (Cg) of Modes I and II in Fig.6a. In this regime,
designated as Regime III of motion, o7 librates around 0, while 2 and Aw librate around 7.

In the spectral map (Fig. 6a bottom), the resonant Regime III appears clearly separated from
the secular regime of motion by a true separatrix, denoted by S1 on the sections. The vertical
broad lines seen in the spectral map correspond to the chaotic separatrix trajectories. Note that
the curves S1 on the sections do not show any visible indication of chaotic motion. In the region
between S1 and the frontier of Mode I, o5 and Aw alternate between libration and circulation,
while oy remains librating around zero. We note in Fig. 6a bottom that circulation orbits of Mode
IT are still present, and Mode I is entirely preserved under the resonant perturbations.

For growing energy, the domain of Regime III increases, as we can see in the sequence of
the panels in Fig.6a-6c. The fixed point of this regime of motion gradually moves toward the
left-hand edge on Uranus section, while, on the Neptune section, it moves toward the origin
(Fig.6d). Mode II remains outside the separatrix S1 occupying a decreasing zone on the sections
and spectra maps; Mode I is always present.

One periodic solution obtained at Regime III of motion is shown in Figs. 7a,b and illustrates
the coupled libration of the critical angles o4 and o2. The secular angle Aw represented by the
coupled libration of the critical angles, librates around 7.



4.4 Regime IV and changes in Regime III

A new regime of motion appears at the slightly larger energy g from Table I. As we can see in
Fig. 8a, this mode, designated as Regime IV, appears just inside the domain of Regime III. A new
separatrix associated with this regime is plotted on the sections by the curves S2. The chaotic
character of motion near S2 is confirmed by the spectral map: The monotonic evolution of the
frequencies inside Regime III is now broken up and discontinuities appear. The frequency of the
secular angle Aw tends to zero near S2: this is a feature of the infinite-period separatrix of the
secular resonance. In the regime R IV, the critical angles o; and o3 continue to librate around 0
and 7, respectively. The difference between regimes III and IV is in the motion of the angle Aw:
now it librates around 7 in a direction opposite to that of Regime ITI. This change in the direction
of motion of the secular angle Aw is an other feature of the secular resonance. Therefore, we
conclude that Regime III is the secular resonance located inside the 2/1 mean-motion resonance.

As the energy is increased, Regime IIT of motion suffers some changes: o1 continues to librate
around 0, while o2 changes its libration around 7 to one around 0. We have detected this transition
at H ~ +1.497 x 1072 and present the corresponding planetary trajectories in Fig. 7c,d. It should
be emphasized that the passage of the center of libration of oo through the origin (consequently,
the center of libration of oy reaches the energy edge on Uranus section) is merely kinematical,
and a new separatrix does not appear on the sections. Due to this fact, we maintain the same
name for this type of motion.

4.5 Splitting of Regime IIT and enlargement of Regime IV

Fig. 8b shows the surfaces of sections constructed along the energy level h from Table I. The
fixed point of Regime III of motion is now in the right-hand side on Neptune section, passing
through the origin of the section from 7 to 0. On Uranus section, the center of Regime III is
squeezed against the energy border. Since it leaves the z axis, the periodic orbit of the Regime
IIT cannot be seen in the spectral map constructed with the condition sinAw = 0. We note that
Regime III arises with anti-aligned orbits and evolves continually to have aligned orbits, what
can be seen in the sequence of the panels shown in Fig.7. (Similar behavior of Regime III was
observed in the construction of the sections b).

We end this section describing the other regimes present in Fig. 8b. The Regime IV increases
its domain and the separatrix S2 is now located near the origin of Uranus section and the spectral
map. The secular Mode I is still present on the sections and spectral map in spite of the resonant
perturbations.

4.6 Study of the four sections

The analysis of the main features of the dynamics of the resonant system present above was done
over the surfaces of section of the kind a. In this section, we investigate the sections constructed
for the four roots a, b, ¢ and d of eq. (11), along the energy level i (Fig.1). They are shown in
Fig.9a,b. The spectral maps corresponding to Uranus sections a and b are also shown in Fig. 9a.

The Uranus and Neptune sections a and b constructed at the energy (H =~ +1.51 x 10*9) are
plotted in Fig.9a,b top. Regimes IIT and IV of resonant motion are present on all sections. It
should be emphasized that the corresponding fixed points on the sections a and b are obtained
with different initial conditions and, consequently, are not equivalent.

On the section a, Mode I of secular motion occupies a large domain of stable motion (Fig.9a,b
top left). At variance, on the section b, its domain, delimited from the regions of resonant motion
by the separatrix S1, is vanishing (Fig.9a,b top right).

We finish this section analyzing the surfaces of sections ¢ and d shown in Fig. 9a,b bottom. As
pointed in Section 3, some information would be lost if these sections have been used in the study
of the resonant dynamics of the system. Indeed, the information on Regime IV is not present in
the figures, which do not show the fixed point associated to this regime.
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4.7 Regime V

The formation of a new regime of motion can be seen at slightly larger values of energy in Fig. 10.
This figure shows the sequence of Uranus sections b . The new regime, designated as Regime V,
replaces the extinct Mode I of motion on the sections b. Its evolution with the increasing energy
can be observed on the sections shown at an enlarged scale in Fig. 10. The complex structure of
the phase space is characterized by the presence of secondary resonances and regions of chaotic
motion. At H ~ +1.517 x 1079, a new structure appears (Fig.10g), increases its domain up to
H =~ +1.526 x 10~° (Fig. 10i) and disappears at H = +1.5265 x 10~ (Fig. 101). In Regime V of
motion, oy and Aw show retrograde and direct circulations, respectively, while o librates around
7. The periodic motions of Uranus (a) and Neptune (b) in this regime are shown in Fig. 11.

The domain of Regime V is located in the proximity of the origin on the Uranus section a
and the energy boundary on Neptune section a (see details in the right-hand side in Fig. 12). It
is enclosed by chaotic orbits of the separatrices S1 and S2. The spectral maps in Fig.12 bottom
reveal the highly nonharmonic nature of the orbits in Regime V of motion.

For energies larger than H = +00.7€3 x oo/~> (level j from Table I), Regimes III and V
disappear, and Mode I and Regime IV are only remaining on the sections a. As the energy is
increased, the domains of these regimes gradually decrease and disappear at the energy of the
equilibrium point PITt. Figure 13a,b shows two examples of the surfaces of section obtained
along the levels k (H = +1.55 x 107°) and 1 (H = +1.90 x 10~?). This later is located very close
to the equilibrium point PII*. The corresponding spectral maps reveal the presence of the two
fundamental frequencies and their harmonics. On the sections b, only Regime IV is remaining at
energy H ~ +1.5265 x 10~? (for example, see Fig. 101), until to disappear at the maximal energy
H ~ +1.9171 x 10~°.

5 The parameter plane

In Section 4, we have presented the results of the investigation of the dynamics of Uranus-
Neptune system obtained with the value of ¢ fixed at 0.0012. The aim of this section is to explore
the dynamics of the systems for different values of 4.

As pointed in Section 3, the topology of the phase space given by the Hamiltonian (11) is
characterized by three zero-gradient points: C, PII~ and PIIT. The location of these points on
the representative plane (e1, e2) depends on the chosen value of § through H = f(z1(e1), z2(e2); d)
and y; = y2 = 0. The energy levels corresponding to these points delimit the main domains of
motion: the resonance zone, where H(PII™) < H < H(PII'), and the near-resonance zone, where
Hpin < H < H(PIT). Therefore, in order to investigate the dependence of the 2/1 resonance
dynamics on §, we need to know the position of three zero-gradient points on the (eq, e3)—plane
as a function of 4.

The coordinates (e1,ez) of the zero-gradient points of H as a function of § are obtained by
means of numerical integration of egs. (12). Fig.14 shows the coordinates (e, e2) obtained for
the points C, PII~ and PIIT. The z-axis shows the values of § and the y-axis shows the value
of eccentricities of the points. It should be noted that the points C and PII™ exist only for
§ > 0.0003. For § < 0.0003, there is only the equilibrium point PIIT of zero gradient on the plane
of initial conditions. In this case, the system is far away from the 2/1 resonance, and its dynamics
is dominated by secular perturbations. These results are in good agreement with the results of
the study of families of periodic orbits of the planetary type presented by Hadjidemetriou and
Psychoyos (2003).

Once the eccentricities of the equilibrium points C, PII~ and PIIT are known, we are able to
calculate the energy of these points as a function of §. Here, we introduce the plane defined by
two parameters of the problem under study, § and H. In order to better visualize the results, we
use a normalized value of the energy given by AE = H — HLL where HL is the energy of the
point PIT™ obtained from the secular Hamiltonian (see MF2001a for details; see also the brief
discussion in Section 4.1).
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The main features of the dynamics of the 2/1 resonance are summarized on the parameter
plane (§,AE) shown in Fig.15. The region above the curve PIIT is a forbidden region, where
no real solutions of the Hamiltonian (11) exist. The 2/1 resonance zone is located between the
curves PIIT and PII". In this region, there exist initial conditions leading to several regimes of
motion described in the previous sections. Since the limits of the regimes are located between
the curves PITt and PII—, we can say that they may exist for § > 0.0003 values. (Note that we
cannot guarantee that all regimes of motion detected in resonance zone for § = 0.0012 exist for
any 0 value).

The region between the curves C and PII™ is the near-resonance domain, where both retro-
grade (Cg) and direct (Cp) circulations of the critical angles o; and oy are possible. The full
circle inside the near-resonance region indicates the actual position of the Uranus-Neptune sys-
tem, whose dynamics is dominated by secular interactions. Below the curve C, only retrograde
circulation (Cg) of the critical angles exists.

We complete Fig. 15 by plotting the energies of the separatrices of two single-term resonances,
obtained by removing artificially the coupling terms from the Hamiltonian (11). In this way, we
obtain two Andoyer Hamiltonians given by

)
B(a? +47)” + S (a} + i) + Fxy

H, 2

(13)
1
Hy = B(z2+42)2+ 50 —2(C - D))(z3 +y32) + Izs.

The separatrices given by H; and H» are indicated in Fig. 15 by SPX1 and SPX2, respectively.

6 Conclusions and Discussion

We have performed several numerical experiments with the planar model that represents the
2/1 mean-motion resonance in planetary systems. The model was applied to the system Sun-
Uranus-Neptune, which is actually close to the 2/1 resonance. The dynamics of this system was
studied by means of surfaces of section and spectral analysis of the solutions obtained over a wide
range of initial conditions. The main conclusions are summarized in the following.

Far away from the 2/1 resonance, the critical angles o1 and o5 are in a retrograde circulation
(the secular regime Cg), and the dynamics of the systems is dominated by secular interactions.
The secular angle Aw oscillates around 0 (secular Mode I) or 7 (secular Mode II), depending on
the initial condition. When the system is outside one of the secular modes, Aw is in a retrograde
circulation. When the 2/1 resonance is approached, the system enters into the near-resonance
region, where the direct circulation of both ¢; and o2 may occur (the secular regime Cp).

In the region of transition from near-resonance to resonance, the behavior of the system is
chaotic. In the transition regime of motion, the critical angles alternate their circulation regime
between direct and retrograde circulations.

In the domain of the 2/1 resonance, there are three different regimes of motion:

Regime III: the secular resonance inside the 2/1 mean-motion resonance. In this regime,
o1 librates around 0, while o2 (Aw) librates around either = or 0. The domain of the secular
resonance is separated by the chaotic layers S1 and S2 from the near-resonance and resonance
regions, respectively.

Regime IV : the dominating 2/1 resonance regime of motion, when o librates around 0. The
angles o2 and Aw librate or circulates around 7 (the difference is merely kinematical). In this
regime, the motion of the system can be approximated by the first-order e; single-term resonance
given by the Hamiltonian H; (eq.13).

Regime V: the weak regime that can be, in first order, approximated by the single-term
resonance given by the Hamiltonian Hy (eq.13). The angles oy and Aw circulate in retrograde
and direct directions, respectively, while o5 librates around .
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Some insight on the size of the domains of the different regimes of motion can be gained
by constructing the dynamical map of the representative plane of initial conditions (ey,ez2). It
is shown in Fig.16. The gray-scale code is related to the degrees of stochasticity of the initial
conditions: white corresponds to regular orbits, while darker gray levels indicate the increasingly
chaotic motion. The construction of the map was based on the calculation of the spectral number
N, defined as the number of significant (more than 10% of the larger peak) spectral peaks in
the oscillation of the variables x;, i« = 1,2 (for further details about the map construction see
MF2001a, Michtchenko and Ferraz-Mello 2000).

The regions in white (N = 1) correspond to the periodic orbits associated with the main
regimes of motion (some of these are indicated by symbols - see legend in Fig. 16). The plane is
dominated by the regions in light gray, which correspond to regular motion of the system (quasi-
periodic solutions). The dark regions correspond to highly nonharmonic and chaotic motion
associated with the solutions close to the separatrices S1 and S2.

For § = 0.0012, the phase space is dominated by the secular regime and the resonant regime
RIV of motion. The domains of the regimes RIII and RV are confined to the very narrow zones
located deeply inside dark regions of chaotic motion. The domains of Regimes III and V are not
robust, and they could not survive in a more complex model.

The described properties of the 2/1 resonance were obtained for the planet mass ratio m—; ]
0.847, with my > my. We have also performed numerical experiments with different mass ratios:
three of them with the mass of the inner planet larger than the outer one (mj; > mg) (mass
ratio 1.18,1.77,8.77), and one with m; = my. The main features of the 2/1 resonant dynamics
described in this paper, such as the secular regime, Regimes ITI, IV and V of motion were observed
in all cases. However, to get a better knowledge on the sensitivity of the 2/1 resonant dynamics
upon the different mass configurations, a complete study would be necessary.

Appendix

This appendix gives the expressions for the coefficients of the Hamiltonian (11). They are
functions of the semi-major axes ratio & = 2%, and the masses mg, my, mo of the central star,

a2
inner and outer planets, respectively.

The coefficients a, b, ¢, d, e, f, g, h in eq. (6) are functions of a only. Denoting with Do = &
D2 = % the derivatives of the Laplace coefficients b («), we have the following expressions:

L0

@ = §b1/2
1 2 12\#(0) 1 (1)

b = 5(2(1Da + « Da)b1/2 = 50[1)3/2

¢ = (2—2aD,— azDi)bg/é = _abg’b;)z

d = —[2(1+r)+aDp{;3"

e = (2r+1+aDy)b),+¥

f = [16(1 +7)2 —10(1+7) + (8 —6)aD, + a2D§] bf;l;-r)

g = [16r+18r + (8 +6)aDa +aD2 + 4] 1)

h = — [4(2r + 1)2 +2(2r+1)+ (8 + 6)aD, + 042Di] bg2/r2+1)7 (14)

where 7 = 1. The term 9 which appears in the coefficient e comes from the indirect part of the
disturbing function and is present only in the case of first-order resonances. It is given by:

az Mo

v=- a\/(m1+mo)(m2+mo)'

(15)
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The coefficients A, B, C, D, E, F, R, S, T in eq. (10) appear in the expansion of the Hamil-

tonian (6) in I;, ¢ = 1,2, and are given by:

1 k‘l’f' kz(T+1)
A = - —t—
3 k1r2 kQ(T+1)2
B = -
8Gm0 |: Jf Jé )
1 —b  20r+1a 2 dafBius [Jir  JE(r+1)
¢ = ko 5T — 73 T 2t |
1 1 2 da Bipp [Lr | Ji(r+1)
D = — — | — 2 1 5 7 52 - 13
2k12{J23[ b+2(r+ )a]+J22 o Bpn | T2 73 ;
(16)
E = —kia2c F= —ki2d _ —ki2h
T OARVLRT 2L 20V
 —kwf o —kig
R = 8J1J22’S_ 8J3
T o_ —ki2h

NN

with ki = p1 87ma, ko = paBima, kia = Gmimaopsf33.

The last terms in the expressions for the coefficients C' and D come from the expansion of
the quantity < given in eq. (7) (Section 2). This expansion must be done since this term is not
multiplied by any eccentricity, and these corrections are of order O(I;).

Table IT: Numerical values of the semi-major axes defining the exact resonances and constants

Jio
Uranus | 19.0737 | 1.1981x103
Neptune | 30.2778 | 1.7809x10 3

Table ITI: Numerical values of coefficients of the Hamiltonian

Coefficient

Numerical Value

-55.37

+5.8250x 106

+6.4460x107°

+1.1557x 10~

+1.0086%x107

-7.3549%x1078

-4.1779%x107°

-1.0003x108

N| O | | | = O QW

+1.7759%x 108
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FIGURES

Figl. Energy level curves of the Hamiltonian given by eq. (11) on the plane of initial conditions
for the 2/1 resonance of the Uranus-Neptune system. The initial values of y; = e; sin o; are fixed at
zero and § = 0.0012. The points PII~, PII* and C are points of zero gradient of the Hamiltonian
(11). The thick curves are locations of the conditions 1= 0 and g2= 0.

Fig2. Top: Surfaces of section of Neptune. Middle: surfaces of section of Uranus. The thick
curves are the boundaries of the energy manifold. Bottom: spectral maps corresponding to the
solutions shown on the Uranus sections. § = 0.0012. The main regimes of motion are indicated
at the bottom of the panels. a) Energy level a from Table I and Fig.1. b) Energy level b.

Fig3. The enlarged domain of initial conditions around the equilibrium point PII~ shown in
Fig.1.

Figd. a) Periodic orbits of Uranus in the neighborhood of the equilibrium point PII~. The
arrows show the direction of motion of the critical angle o1, and the points show the initial
positions of the planets. Chaotic behavior around the center of Mode II is explained by a transition
between the direct and retrograde motions. b) The same for Neptune, except the critical angle
agy.

Figh. Periodic orbits of the Modes I and II. In Mode I the lines of the planetary apses are
aligned. In Mode II they are anti-aligned. The number 1 indicates the initial configuration of the
planets; 2 indicates the planetary configuration after one revolution of the inner planet. After
one revolution of the outer planet, they are both back to 1.

Figbab. The same as in Fig.2. a) Energy level ¢ from Table I. b) Energy level d. c¢) Energy
level e. d) Energy level f.

Fig6cd. Fig. 6: Continued.

Fig7. Examples of the resonant periodic orbits in Regime III. Left column: the periodic orbits
of Uranus. Right column: the periodic orbits of Neptune. Points indicate initial planet positions,
and arrows show the direction of motion. a,b) coupled libration of the critical angles (the energy
level ¢). c,d) Libration of o; and circulation of o, for energy level H = +1.497 x 107°. e,(f)
coupled libration of the critical angles around 0 (energy level ).

Fig8. The same as in Fig. 2. a) Energy level g from Table I. b) Energy level h.

Fig9. a) Uranus sections and spectral maps over energy level i. Top: surfaces of section of
the kind a (left) and b (right). Middle: spectral maps corresponding to the sections a (left) and
b (right). Bottom: Surfaces of section of the kind ¢ (left) and d (right). b) Neptune surfaces of
section corresponding to sections given in figure a). Top: sections a (left) and b (right). Bottom:
sections ¢ (left) and d (right).

Fig9db. Figure 9: Continued.

Figl0. The enlarged domains of Regime V of motion. At H ~ +1.511 x 10~? (b), a complex
dynamical structure arises in the phase space, which survives up to H ~ +1.514x107? (10e). The
nature of this structure was not studied in detail, but it probably involves secondary resonances.
For H = +1.517 x 10~? a new robust mode of motion appears, the Regime V.

Figll. Example of the resonant motion in Regime V: (a) periodic orbit of Uranus, (b) periodic
orbit of Neptune. Points show initial positions of the planets, and arrows show the direction of
motion. In figure a, numbers 1-4 represent four steps of simulation, in which o1 begins with ret-
rograde circulation (1), evolves in a direct circulation (2,3), and returns to retrograde circulation
(4). The energy corresponds to level j from Table I.

Figl2. a) Surfaces of section of Neptune. b) Surfaces of section of Uranus. c) Spectral maps
corresponding to the solutions shown on the Uranus section. The main regimes of motion are
indicated on the sections. Energy level j from Table I. Panels on the right-hand side are the
enlarged regions of the figures a, b and c.

Figl3. The same as in Fig.2. a) Energy level k from Table I. b) Energy level I Scale and
axes are the same in both figures.

Figl4. Coordinates of the three zero-gradient points C, PII"™ and PII* of the Hamiltonian (11)
as a function of . The condition e; < 0 means that o; = 7 and e; > 0 means that o; = 0,7 =1,2.
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The coordinates of the points C, PII~ and PIIT shown in Fig. 1, are indicated by vertical line,
for 6 =0.0012.

Figl5. The (0,AFE) parameter plane. The resonance zone is located between curves PII*T and
PII~, and the near-resonance zone between PII™ and C. Cg: retrograde circulation, Cp: direct
circulation. Full circle represents the actual position of the Uranus-Neptune system.

Figl6. The dynamical map of the representative plane of initial conditions, for 6 = 0.0012.
The labels represent the main regimes of motion. Full symbols represent some initial conditions
of the periodic orbits obtained from sections b, while open symbols represent the same orbits
obtained from sections a (Callegari 2003). Circles: R III, squares: R IV, stars: R V. The location
of the points PITT, PII~ and C shown in Fig. 1 is also indicated.
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Figure 1: Energy level curves of the Hamiltonian given by eq. (11) on the plane of initial conditions
for the 2/1 resonance of the Uranus-Neptune system. The initial values of y; = e; sino; are fixed at

zero and § = 0.0012. The points PII~, PIIt and C are points of zero gradient of the Hamiltonian
(11). The thick curves are locations of the conditions ¢1= 0 and g2= 0.
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Figure 2: Top: Surfaces of section of Neptune. Middle: surfaces of section of Uranus. The thick
curves are the boundaries of the energy manifold. Bottom: spectral maps corresponding to the
solutions shown on the Uranus sections. § = 0.0012. The main regimes of motion are indicated
at the bottom of the panels. a) Energy level a from Table I and Fig. 1. b) Energy level b.
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Figure 3: The enlarged domain of initial conditions around the equilibrium point PII~ shown in
Fig.1.
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Figure 4: a) Periodic orbits of Uranus in the neighborhood of the equilibrium point PII=. The
arrows show the direction of motion of the critical angle o1, and the points show the initial
positions of the planets. Chaotic behavior around the center of Mode I is explained by a transition
between the direct and retrograde motions. b) The same for Neptune, except the critical angle
g9y.
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Figure 5: Periodic orbits of the Modes I and II. In Mode I the lines of the planetary apses are
aligned. In Mode II they are anti-aligned. The number 1 indicates the initial configuration of the
planets; 2 indicates the planetary configuration after one revolution of the inner planet. After
one revolution of the outer planet, they are both back to 1.
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Figure 6: The same as in Fig.2. a) Energy level ¢ from Table I. b) Energy level d. c) Energy
level e. d) Energy level f.
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Figure 7: Examples of the resonant periodic orbits in Regime III. Left column: the periodic orbits
of Uranus. Right column: the periodic orbits of Neptune. Points indicate initial planet positions,
and arrows show the direction of motion. a,b) coupled libration of the critical angles (the energy
level c). c,d) Libration of oy and circulation of o3, for energy level H = +1.497 x 1072, e,(f)
coupled libration of the critical angles around 0 (energy level 7).
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Figure 8: The same as in Fig. 2. a) Energy level g from Table I. b) Energy level h.
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Figure 9: a) Uranus sections and spectral maps over energy level i. Top: surfaces of section of
the kind a (left) and b (right). Middle: spectral maps corresponding to the sections a (left) and
b (right). Bottom: Surfaces of section of the kind ¢ (left) and d (right). b) Neptune surfaces of
section corresponding to sections given in figure a). Top: sections a (left) and b (right). Bottom:
sections ¢ (left) and d (right).
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Figure 10: The enlarged domains of Regime V of motion. At H ~ +1.511 x 1079 (b), a complex
dynamical structure arises in the phase space, which survives up to H ~ +1.514x107? (10e). The
nature of this structure was not studied in detail, but it probably involves secondary resonances.
For H ~ +1.517 x 10~? a new robust mode of motion appears, the Regime V.
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Figure 11: Example of the resonant motion in Regime V: (a) periodic orbit of Uranus, (b)
periodic orbit of Neptune. Points show initial positions of the planets, and arrows show the
direction of motion. In figure a, numbers 1-4 represent four steps of simulation, in which ¢; begins
with retrograde circulation (1), evolves in a direct circulation (2,3), and returns to retrograde
circulation (4). The energy corresponds to level j from Table I.
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Figure 12: a) Surfaces of section of Neptune. b) Surfaces of section of Uranus. ¢) Spectral maps
corresponding to the solutions shown on the Uranus section. The main regimes of motion are
indicated on the sections. Energy level j from Table I. Panels on the right-hand side are the
enlarged regions of the figures a, b and c.
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Figure 13: The same as in Fig.2. a) Energy level k from Table I. b) Energy level I. Scale and
axes are the same in both figures.
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Figure 14: Coordinates of the three zero-gradient points C, PII™ and PII* of the Hamiltonian (11)
as a function of 4. The condition e; < 0 means that o; = 7 and e; > 0 means that o; = 0,7 = 1,2.
The coordinates of the points C, PII~ and PIIT shown in Fig. 1, are indicated by vertical line,

for 6 = 0.0012.
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Figure 15: The (§,AE) parameter plane. The resonance zone is located between curves PIT* and
PII~, and the near-resonance zone between PII™ and C. Cg: retrograde circulation, Cp: direct
circulation. Full circle represents the actual position of the Uranus-Neptune system.

33



0.08 1 | | | | | 1 |

0.D6

0.044

0.024

o

-0.02+

gccentricity (Neptune)

-0.044

-0.06

T T T T
-0.08 006 004 DOz 0 002 004 00 D08

eccentricity {Uranus)

Figure 16: The dynamical map of the representative plane of initial conditions, for § = 0.0012.
The labels represent the main regimes of motion. Full symbols represent some initial conditions
of the periodic orbits obtained from sections b, while open symbols represent the same orbits
obtained from sections a (Callegari 2003). Circles: R III, squares: R IV, stars: R V. The location
of the points PII*, PII™ and C shown in Fig. 1 is also indicated.

34



