# Modelling stellar micro-variability



#### S.Aigrain (IoA, Cambridge) F. Favata (ESA/ESTEC), G. Gilmore (IoA, Cambridge)

2nd CoRoT Brasil Meeting, Ubatuba, 11/05

Image: GOES-12 / SXI composite of Venus 2004 transit



### Outline

- Motivation in the context of CoRoT
- Modelling the solar background
- Rotational modulation model of Lanza et al.
- SIMLC: stochastic micro-variability model
- Understanding the chromaticity of Sun-like variations
- Summary



#### Motivation



- need to find transits in the presence of variability
- one man's noise is another's signal - understand variability
- want tool to simulate light curves for stars of various temperatures and activity levels





- VIRGO onboard SoHO:
  - PMO6 / DIARAD: total irradiance;
  - SPM: three narrow channels;
  - from activity minimum to maximum.
- No other star to date has been observed so regularly, for so long and to such a high degree of precision.





model power spectrum as:

$$=\sum_{i}\frac{A_i}{1+(2\pi B_i)^{C_i}}$$

P(
u)

(Harvey 1985, Harvey et al. 1993)



#### active regions component





- active regions:
  - timescales > few days;
  - amplitudes ~ 0.0005 mag;
  - combined effect of (bright) faculae and (dark) spots;
  - due to rotational modulation and intrinsic variations.









- active regions:
  - amplitude correlated with activity







#### super- / meso-granulation component





- super- / meso-granulation:
  - timescales of hours
  - close to transit duration
  - cause?





- super- / meso-granulation:
  - timescales of hours
  - close to transit duration
  - cause?











#### Evolution with activity





#### Evolution with activity





# SIMLC: a stochastic microvariability simulator

(Aigrain, Favata & Gilmore 2004 A&A 414 1139, updated version in prep.)

- start from the Sun:
  - model power spectrum of total irradiance variations;
  - follow changes with activity level.
- scale amplitude spectrum model to other star by using:
  - activity / variability correlation from Sun + some other stars;
  - existing scaling laws relating rotation period, colour and activity (Noyes et al. 1984);
  - initial colour / rotation period calibration in Hyades;
  - spin-down law to relate rotation period to age.
- convert back to time domain, applying required sampling.

# Active regions variability versus chromospheric activity



characteristic timescale scales as  $B_i \sim P_{\rm rot}/3$ 



# SIMLC examples: the Sun





# SIMLC examples: behaviour with age and spectral type



 $0.5 R_{
m Jup}$  planet transiting across the Sun



# SIMLC examples: behaviour with age and spectral type





### constraints on granulation

- recent modelling (Freytag et al. 2001, Seleznyov et al. at CW6, Svensson et al. 2004)
  - strong gravity dependence:  $\log P_{gr} \propto -\frac{1}{2} \log g$
  - temperature dependence
  - metallicity dependence
- observational constraints
  - RV: Kjeldsen et al. (1999):  $P_{gr}(\alpha Cen, G2V) \approx P_{gr}(Sun)$
  - WIRE: Bruntt et al. (2005):  $P_{gr}(Procyon, F5IV) \approx 1.8 \pm 0.3 \times P_{gr}(Sun)$
  - MOST: constraints so far elusive

all constraints so far consistent with  $P_{
m gr}^2 \propto -\log g + 3\log T_{
m eff}$ 







## granulation - examples





## **Colour-dependence**

SPM data of the Sun (rebinned to I-day sampling)



2nd CoRoT Brasil Meeting, Ubatuba, 11/05



### Colour-dependence



Sun-like variability in CoRoT light curves will show less colour dependence than in SPM data



## Colour-dependence

Light curves synthesized from SORCE spectra for SPM (left) & CoRoT (right) passbands





# Summary

- Micro-variability is understood as the result of the rotational modulation and intrinsic evolution of structures on the surfaces of stars that have a different effective temperature from the undisturbed photosphere
- Structures of different sizes and lifetimes give rise to variability on different timescales
- Activity-related phenomena dominate on long timescales
- Convection-related phenomena dominate on short timescales
- Tools now exist to simulate micro-variability for a wide range of stars in the CoRoT passbands, though they are constantly being improved
  - see also rotational modulation model of Lanza et al. (G. Cutispoto's talk)



# Micro-variability in the CoRoT era

- Unprecedented sample (10,000's stars across the HR diagram)
- Unprecedented data (photometric precision, baseline, time sampling, colour information)
- Many accepted additional programs in first AO...
- The role of the type of models described in this talk is to provide a link between the physical phenomena responsible and fundamental stellar parameters